
“rozprawa” — 2021/5/11 — 15:22 — page 1 — #1

WARSAWUNIVERSITY
OF TECHNOLOGY

Faculty of Electronics and Information Technology

Ph.D. THESIS

mgr inż. Wojciech Dudek

Prudent management of interruptible tasks executed by a service
robot

Supervisor
dr hab. inż. Wojciech Szynkiewicz

WARSAW 2021

“rozprawa” — 2021/5/11 — 15:22 — page 2 — #2

“rozprawa” — 2021/5/11 — 15:22 — page 3 — #3

Acknowledgments
First, I want to express my gratitude to my supervisor Dr hab. Wojciech Szynkiewicz

for his scientific support and inspiration. His patience and forbearance shown in priceless
comments made our cooperation fruitful in this dissertation. I cannot omit the effort of Prof.
Cezary Zieliński. Numerous inspirational, scientific discussions with him were guides for my
work that resulted in this dissertation.

Besides the professors’ mentoring and guidance, the day-by-day support from my master’s
thesis supervisor Dr Tomasz Winiarski had another essential impact on my work. I am
thankful for his time, scientific discussions, work reviews and jokes that helped me traverse
problems. I want to thank my scientific team members for suggestions, fruitful cooperation
in projects, and open discussions on not only scientific topics.

I want to thank my whole family and friends for the constant and unconditional motivation
and support. In particular, I want to express my gratitude to my wife for relaxing trips and
talks that preserved me from becoming another robot. Thank you for taking care of the things
and duties that were not visible from above the papers and the computer’s screen. I want to
thank my siblings for being a shining and motivating example of a well-organised, ambitious,
successful and dreams-achieving researcher and leader. Finally, I express my gratitude to my
parents for teaching me priorities, critical thinking and factual discussion that are the most
excellent tools for a researcher.
Without you all, this work would be neither satisfactory nor possible to conduct.

Dziękuję całej rodzinie i przyjaciołom za bezustanne i bezwarunkowe wsparcie oraz mo-
tywację. W szczególności dziękuję mojej żonie za odprężające wycieczki i pogawędki, które
uchroniły mnie przed pracocholizmem i przekształceniem się w kolejnego robota z laborato-
rium. Dziękuję Ci, za zajęcie się sprawami, które nie były dla mnie widoczne znad dokumen-
tów, artykułów i ekranu komputera. Dziękuję mojemu rodzeństwu za motywujący wzór dobrze
zorganizowanego, ambitnego i odnoszącego sukcesy naukowca, inżyniera i lidera. Dziękuję
rodzicom za przekazane wartości oraz naukę zarówno krytycznego myślenia, jak i rzeczowej,
opartej na faktach dyskusji, które są najlepszymi narzędziami naukowca.
Bez was wszystkich ta praca nie byłaby ani satysfakcjonująca, ani możliwa do wykonania.

Dziękuję!

I acknowledge the support of the INCARE AAL-2017-4-059 project ”Integrated Solution for Innovative Elderly Care” founded by
the AAL JP and co-funded by the AAL JP countries.
I acknowledge the support of the ”Look & learn: Skill acquisition by a companion robot based on task demonstration” project
founded by Warsaw University of Technology.
I acknowledge the support of the the FP7 Collaborative Project RAPP (Grant Agreement No. 610947), funded by the European
Commission. The work is supported by the Polish Ministry for Science and Higher Education scientific research funds for the
years 2014–2016 granted for the realization of co-financed international project.

“rozprawa” — 2021/5/11 — 15:22 — page 4 — #4

“rozprawa” — 2021/5/11 — 15:22 — page 5 — #5

Abstract

Task management is a core ability of living and artificial autonomous entities. In robotics,
it is especially crucial for versatile service robots that are tailored to help humans in various
duties. In some applications, robots are shared by multiple users that don’t agree their re-
quests. Versatile service robots often work in dynamic environments, and their users’ needs
and preferences change in time. Thus, the robots need an advanced task management ability
that includes i.a. dynamic priority assignment, repetitive check of tasks’ feasibility and task
plans update. Additionally, robots need to foresee the consequences of their task interruption
(e.g. leaving a cooker on). Therefore, the problem of prudent task management respecting
the danger of interrupting robot’s tasks arises. Prudent task management considered in this
dissertation is constituted of i.a. safe suspension and resumption of independent tasks, sched-
ule parameters reappraisal invoked by changes in the environment and termination of a queued
tasks that are no longer feasible.

The research this dissertation describes was targeted to design a model of robot control
systems with prudent task management. The model specifies a robot system with an agent-
based approach and consists of multiple agents of various classes. A Harmoniser class Agent
that manages task requests, initialises tasks and switches their modes of operation following
a configurable task management algorithm. The model specifies Dynamic class Agents that
execute single tasks described with Hierarchical Finite State Machines (HFSM). States of the
HFSM have assigned goals, e.g., a safe suspension management of the current task before
a task switch. Thanks to that, the model enables mitigation of the problems in predicting the
consequences of the robot’s activity interruption. The requirements specified for the conducted
study forced convenient configuration of the model to enable its application to various robots
executing diverse tasks in different environments.

The robot systems are complex, and their overall behaviour is troublesome to describe
precisely. Therefore, this dissertation uses a formal method—Embodied Agent Meta-model
to specify the robot control system model. Thanks to that, the experiments and the model
implementation can be accurately reproduced. What is more, the model can be fitted for other
requirements and reused.

The model resulted from the research is used to implement two example control systems
of different robots (TIAGo mobile robot and Velma mobile manipulator). The robots work
in different environments, and various algorithms manage their tasks. The example systems
are launched in typical scenarios. The robots’ behaviours and their tasks management are
confronted with the requirements and constraints of the research.
Keywords: Service robots, System engineering, Finite State Machines, Scheduling, Task analysis

5

“rozprawa” — 2021/5/11 — 15:22 — page 6 — #6

“rozprawa” — 2021/5/11 — 15:22 — page 7 — #7

Rozważne zarządzanie przerywalnymi zadaniami
wykonywanymi przez robota usługowego

Streszczenie

Zarządzanie zadaniami jest podstawową umiejętnością autonomicznych organizmów żywych
i urządzeń. Problem zarządzania zadaniami jest kluczowy dla wszechstronnych robotów usłu-
gowych, które pomagają ludziom w wypełnianiu różnych obowiązków. Niekiedy roboty te są
współdzielone przez wielu użytkowników, którzy nie uzgadniają ze sobą poleceń dla robota.
Wszechstronne roboty usługowe często pracują w zmiennych środowiskach, a do tego ich
użytkownicy zmieniają swoje żądania i preferencje. A zatem, takie roboty potrzebują odpowied-
niego zarządzania zadaniami. Dzięki niemu robot ustala i aktualizuje priorytety, powtarzalnie
sprawdza możliwość wykonania zadań oraz aktualizuje plany wykonania zadań. Ponadto,
roboty przerywając obecnie realizowane zadanie, muszą przewidywać konsekwencje wynika-
jące z tego przerwania (np. pozostawienie włączonej kuchenki). System sterowania robota,
który posiada wyżej wymienione cechy oraz wstrzymuje/wznawia zadania, odświeża estymaty
parametrów szeregowania w reakcji na zmiany w środowisku oraz zamyka zadania oczekujące,
które stały się niewykonalne, nazywany jest w tej rozprawie rozważnym.

Problem podejmowany w niniejszej rozprawie to określenie modelu dla systemu sterowa-
nia robota, który jest rozważny podczas przełączania zadań. Model ten bazuje na podejściu
agentowym i określa wiele agentów, które należą do różnych klas. Agent harmonogramujący
zarządza żądaniami zadań, uruchamia zadania oraz zmienia ich tryby pracy według konfigu-
rowalnego algorytmu zarządzania zadaniami. Opracowany model definiuje agenty dynami-
czne, które wykonują pojedyncze zadania. Działanie tych agentów jest oparte o hierarchiczne
automaty skończone, których stany mają przypisane cele. Przykładowo, wyróżnione są stany
zarządzające bezpiecznym wstrzymaniem aktualnego zadania przed wykonaniem przełączenia
na inne zadanie. Dzięki temu opracowany model upraszcza problem przewidywania konsek-
wencji wynikających z przerwania czynności robota oraz umożliwia przeciwdziałanie tym niepo-
rządanym. Jednym z isotnych wymagań dla opisywanych prac jest łatwa i wielokierunkowa
konfiguracja modelu. Dlatego możliwe jest wykorzystanie tego modelu w systemach różnych
robotów wykonujących rozmaite zadania w zróżnicowanych środowiskach. Model bazuje na
rozwiązaniu integrującym wiele robotów, przez co opracowane rozwiązanie może być łatwo
zaaplikowane do systemów wielorobotowych. System sterowania wszechstronnego robota usłu-
gowego często jest skomplikowany, a opis jego działania jest zawiły i niejasny. W tej rozprawie
zastosowano formalną notację agenta upostaciowionego do definicji proponowanego modelu.

7

“rozprawa” — 2021/5/11 — 15:22 — page 8 — #8

Dzięki temu model jest szczegółowo przeanalizowany, a efekt pracy, przeprowadzone ekspery-
menty i implementacja mogą być dokładnie odtworzone.

Wynik opisanych w tej rozprawie badań został wykorzystany do opracowania przykładowych
systemów sterowania dwóch robotów: mobilnego robota TIAGo oraz mobilnego manipula-
tora Velma. Roboty te pracują w różnych środowiskach, a ich zadania są szeregowane przez
dedykowane algorytmy. W ramach weryfikacji przeanalizowano opracowany model w kierunku
spełnienia założeń postawionych na początku badań. Ponadto skonfrontowano działanie
przykładowych systemów sterowania w typowych scenariuszach dla problemu przełączania
zadań.

Słowa kluczowe: Roboty usługowe, Inżynieria systemów, Automaty skończone, Szeregowanie,
Analiza zadania

8

“rozprawa” — 2021/5/11 — 15:22 — page 9 — #9

Table of Contents

Glossary 11

1 Introduction 17
1.1 Motivation . 17
1.2 Background of the research . 18
1.3 Thesis of the dissertation . 22
1.4 Works that the study is based on . 22
1.5 Organisation of the research . 28

2 Explanation of the problem and the formal notation 31
2.1 Considered use cases . 31
2.2 The system requirements . 34
2.3 Contribution and applicability . 35
2.4 Notation of the model specification . 39

3 The robot system model enabling prudent task management 43
3.1 The system structure . 43
3.2 The Dynamic Agent class . 46
3.3 The Task Harmoniser Agent class . 53
3.4 The Executor, Cloud and Task Requester Agent classes 58
3.5 The harmonisation procedure . 60

4 Verification – implementation, specification and execution of the example systems 67
4.1 Implementation of the TaskER model . 67
4.2 The system with simple tasks and complex schedule parameters – the TIAGo

robot example . 69
4.3 The system with a complex task and simple schedule parameters – the mobile

manipulator example . 80

9

“rozprawa” — 2021/5/11 — 15:22 — page 10 — #10

5 Conclusions 85
5.1 Discussion and related works . 85
5.2 Summary . 92
5.3 Future work . 95

10

“rozprawa” — 2021/5/11 — 15:22 — page 11 — #11

Glossary

Term Description
Action An abstract, atomic step of an activity carried out by an en-

tity.
Activity An abstract complex operation of an entity defined by a flow

of multiple actions.
Agent In agent-based approach to systems specification, agents are

the primary parts of a system. The detailed description of
the Embodied Agent concept used in this dissertation is pro-
vided in Sec. 1.4.2 and Sec. 2.4.

Basic behaviour A formally defined operation of an Embodied Agent while it
stays in a given state of the FSM governing the agent’s oper-
ation. Themodel of the basic behaviour is shown in Fig. 2.6.

Environment It is a set of entities that the system act on and percept.
FSM It is a Finite StateMachine governing the operation of a sub-

system of an Embodied Agent.
Initial condition A logic function associated with an edge of an FSM graph

and defines the condition for the edge. To preserve the
FSM’s uniqueness, the initial conditions associated with all
edges directed from a state must be mutually exclusive, and
their composition must return True to preserve complete-
ness of the FSM.

11

“rozprawa” — 2021/5/11 — 15:22 — page 12 — #12

Schedule parameters Arguments that are taken into account by the scheduling
algorithm. They are used to compute costs that influence
schedule decisions. They can have various complexity and
interpretation depending on the requirements of the system.
Typically, priorities and temporary constraints are used as
schedule parameters; however, they can be of any form that
reflects the system’s main objective (e.g., a scheduling algo-
rithm of a system for helping elderly people can maximise
their comfort as a schedule parameter). The complete classi-
fication of the parameters considered in this study is shown
in Fig. 2.2.

Scheduling algorithm An algorithm that is defined in a Task Harmoniser Agent.
The algorithm defines the strategy for choosing a Dynamic
Agent that should execute its task at the time. It uses sched-
ule parameters to compute the result that is called schedule
decision.

Scheduling decision It is a result of a scheduling algorithm. It can have one of
the three values: ’continue’, ’switch’, ’start’. The ’continue’
value means that the raexeDA should continue its task, or there
are no Dynamic Agents awaiting execution of their tasks.
The ’switch’ value indicates the need to replace the raexeDA
with an agent chosen by the scheduling algorithm (rairrDA).
The ’start’ value indicates the need to start the task of rairrDA
and at the time, there is no raexeDA.

Scope of an agent or
agent set

It is specified in the left upper index of the agent/agent set
symbol (α). If α = s, the agent is system-wide and operates
even if none of the robots is connected to the system. If
α = R, the agent is associated with a robot from the system.
If α = r, where r ∈ R, the agent is associated with the robot
named r. If α is not defined, the agent set aggregates agents
of different scopes.

Stage A part of a task. It is represented as a state of the FSM that
specifies the task.

State A state of an FSM. Operation of an agent in a given state is
defined by the basic behaviour associated with the state.

12

“rozprawa” — 2021/5/11 — 15:22 — page 13 — #13

Subsystem A part of an Embodied Agent. There are various types of
subsystems and they are classified to control subsystems,
virtual receptors, virtual effectors, real effectors, real recep-
tors.

Super state A state that is given by an FSM. If an FSMconsists of a super
state, the FSM is hierarchical.

System A composition of all agents defined by the system developer.
The system operates in its environment and can percept and
affect it.

Task An activity that needs to be executed by the robot to satisfy
the request received from its user. Each Dynamic Agent is
responsible for handling one request. Tasks have different
types, and each type implement a parametrised activity.

Terminal condition A logic function that defines a condition for basic behaviour
to terminate. The model of a basic behaviour utilising the
concept of the terminal condition is shown in Fig. 2.6.

Transition function A function that for defined arguments (a subsystem’s mem-
ory and input buffers) returns values to the output buffers
and the memory of the subsystem that executes the function.

Symbol Description
αaname An agent that operates in the scope defined by α and

is identified by the name parameter.
raexeDA Refers to a Dynamic Agent of the robot r that is cur-

rently executing the task it carries.
rairrDA Refers to a Dynamic Agent of the robot r that is se-

lected by the scheduling algorithm to replace raexeDA.
da, tha, tra, cla, exa, sta,
pla

Identifiers of the agent classes: Dynamic Agent (da),
Task Harmoniser Agent (tha), Task Requester Agent
(tra), Cloud Agent (cla), Executor Agent (exa),
Store Agent (sta), Platform Agent (pla)

scopeAclass An agent group that aggregates agents of a given class
and a given scope. If scope is not defined, the agent set
aggregates agents of a given class and various scopes.

R A set of robots’ names operating in the system.

13

“rozprawa” — 2021/5/11 — 15:22 — page 14 — #14

cowner A control subsystem of an agent identified as owner.
ccowner Memory of a control subsystem of an agent identified

as owner.
ccowner[field] A memory field of an owner agent’s control subsys-

tem.
T
xcowner,interlocutor[field] A field named field of an input buffer of the agent

owner connected to the agent interlocutor.
T
ycowner,interlocutor[field] A field named field of an output buffer of the agent

owner connected to the agent interlocutor.

αbsowner,interlocutors[field] A set of buffer fields named field of the agent
owner connected to the agent(s) interlocutors. If
interlocutors parameter is a set of agents, the sym-
bol refers to the specified buffer fields of the owner
connected with all the agents aggregated in the agent
set (e.g., bsha,Atra [task] refers to a ’task’ fields of ’ha’
agent’s buffers connected to all the agents of tra
class). The α parameter is the direction of the buffers
aggregated in the set, e.g. α =’x’ for input, α =’y’ for
output, or α =’ ’ for both.

FSMowner A Finite State Machine describing the operation of the
control subsystem of the owner agent.

FSMowner,superState A Finite State Machine describing the operation
of the control subsystem in the super state named
superState.

Sname
owner A state named by name parameter of the control sub-

system of the agent owner.
icowner,name An initial condition named by name parameter of the

agent owner.
Uowner A set of all suspendable stages of the Dynamic Agent

named owner. A suspendable stage is expressed
by (3.24).

Lowner A set of all blocking stages of the Dynamic Agent
named owner. A blocking stage is expressed
by (3.25)

14

“rozprawa” — 2021/5/11 — 15:22 — page 15 — #15

Bname
owner A basic behaviour of the owner agent’s control sub-

system. The basic behaviour is identified by the name

parameter.
tcowner,name A terminal condition of the behaviour name of the

owner agent’s control subsystem.
fname
owner A transition function of the behaviour name of the

owner agent’s control subsystem.
pfname

owner A primitive transition function of the transition func-
tion name of the owner agent’s control subsystem.

Dr A set of Dynamic Agents of the robot r awaiting for
execution of the tasks they carry.
Dr = rAda/{raexeDA,rairrDA}.

Fr Is a subset of rAda that are of humanFell type and the
subset is defined by (4.3).

Gr Is a subset of rAda that are of guideHuman type and the
subset is defined by (4.4).

newData(α) A logic function that returns True if the buffer given
by α contains newer data than it was in the function’s
previous call. If α is a set of buffers, the function re-
turns True if any of the buffers’ value changes.

timer(α) A logic function that returns True repetitively with
the frequency specified by α.

15

“rozprawa” — 2021/5/11 — 15:22 — page 16 — #16

16

“rozprawa” — 2021/5/11 — 15:22 — page 17 — #17

Chapter 1

Introduction

1.1 Motivation

Humans develop technology to solve the problems they encounter and to make life convenient.
A significant part of the problems may seem new to us; however, studies show that various
living organisms resolved them during evolution. Therefore, researchers often mirror the solu-
tions developed and verified in real life by nature. This approach applies well in service robotics,
where robots are used to replace humans/animals in tasks/duties that require skills similar to hu-
man’s/animal’s. Every living organism has desires (e.g. to endure) and receives stimulus that
pushes it to carry out actions hoping to receive a short- or long-term reword. The more desires
the organism has, the more complicated its task management is. An ability to order its activities
constitutes the organism’s autonomy. Humans would like to treat service robots like autonomous
and smart servants helping them in everyday duties and fulfilling their whims. Therefore, the
robots need to manage their activities accordingly to the wish of their users. However, on the
one hand, users demand robots to be intelligent, and on the other hand, they do not want to spec-
ify an exact execution time of their requests. This ability is especially crucial in robot systems
cooperating with multiple users who do not agree their requests between themselves. In such
cases, the problem of multiple supervisors arises, and smart request management is obligatory.
It should be noted that in contrast to cybernetic systems, robots affect the real world. There-
fore, some robot tasks require suspending actions before they will be switched with another
task. Visualisation of the problem concept is shown in Fig. 1.1. Multiple users request different
tasks with various priorities at different times. Therefore, the robot needs to interrupt one task
with another prudentially, e.g. turn off the cooker if the interrupted task switched it on. This
dissertation addresses the need for prudent management of the task requests for a service robot
and proposes a solution for specified constraints. The solution is named TaskER (Task har-

17

“rozprawa” — 2021/5/11 — 15:22 — page 18 — #18

Task #2

Task #3

Task #4

Task #1

Task #3 request

Turn off the cooker

Task #4 request
Task switch

Turn on the cookerTask #1Task #2

Urgent
 Task #3

Task #4

Figure 1.1: The concept of the problem considered in this dissertation.

monisER) and constitutes a set of constraints for the robot system development. Following the
multi-application character of robot systems, TaskER applies to various applications involving
robots of different types.

1.2 Background of the research

In everyday life, we humans have many duties. We want to stay productive and not waste any
time. The authors of [1] report that humans tent to juggle multiple tasks simultaneously to
be productive even at the expense of performance. The work results indicate that some mul-
titasking improves productivity, but there is a point where multitasking has a negative effect.
Additionally, the study confirms that more multitasking has a deleterious effect on performance
effectiveness. Therefore, juggling multiple tasks is much more complex, where performance
loss can have serious consequences. The authors of [2] test the students’ reading performance
while being distracted by instant messaging. The test result shows an extra time (excluding
the time for instant messaging) is required to carry out an academic task at the same quality
level while multitasking. There is also a study on humans’ distraction by a cell phone use while
driving [3]. Besides confirming the study thesis, the work reveals an interesting fact of inat-
tention blindness of the driver while he uses a phone. The phenomenon causes the drivers to
overlook information directly in their line of sight. The study reports that conversations with
a passenger do not induce inattention blindness. There is a small group of ”supertaskers” who
can carry out this dual-task combination without impairment. Additionally, the authors discuss
the neural regions that support this ability. The problem of multitasking effectiveness appears

18

“rozprawa” — 2021/5/11 — 15:22 — page 19 — #19

in robotics as well; however, its source is different. Following the referenced papers, humans
lose effectiveness while multitasking mostly because of distraction. Simultaneously, it seems to
be a minor problem in the face of robots’ artificial memory. However, for robots, multitasking
effectiveness can be impaired by non-optimal task switch strategies or inaccurate definition of
inter-task relations.

Tasks carried out by an entity need to be ordered by an algorithm that defines the entity’s
imperative. The algorithm ordering tasks usually minimises or maximises a cost function, but
the function may be contingent and depends on various measurable and abstract parameters. An
example here can be a human simply minimising travel distance while shopping products placed
in different shop areas. However, when some products are limited, he/she will assign priorities
to them, and he/she will switch the goods collecting strategy to approach a limited product first.
Therefore, the environment changes and requests for new tasks change task plans, strategies,
and parameters (e.g. priorities).

The robots are demanded to optimise a tremendous amount of parameters. In mobile robots,
one of the most important tasks requiring optimisation is trajectory tracking [4] and obstacle
avoidance [5]. Solutions differ in the considered constraints and robot kinematics (e.g. unicycle-
like [6], [7], n-trailers [8]). However, robots do not only execute motion actions but also com-
municate with users and acquire information. Therefore, the overall robot’s behaviour composes
multiple motions, communication and computation actions that need to be managed and opti-
mised.

Safety, fault-tolerance and error handling are other crucial problems in robotics [9], [10].
Robots interact with humans, operate in dynamic [11], unknown [12] and inaccessible by the
service staff environments like space. In some applications, they can injure users [13], and
generally, the expected response to an error/fault is complicated [14]. Hazards can be caused
not only by a robot executing actions or its hardware faults, but by interrupting one task by
another as well. Interruptions are non-standard behaviours in a system and need to be managed
carefully, and any dangerous consequence of an interruption should be identified and prevented.

The development of cutting edge technology increases the applicability, universality and
popularity of robots. Therefore, the management of robots’ tasks is necessary and expected.
Following the robot classification by application field (published in [15]), there are two main
branches (industrial and service robots), which are compositions of lower level robots’ classes.
Inspection of the service robot branch reveals the versatility of the applications helping humans
in, e.g. medicine [16], [17], home [18], education [19]–[21], agriculture [22] and defence [23]
areas. Each of the applications has different constraints and requirements for robotic systems. In
health care, usually, robots are targeted to maximise human safety and personnel convenience;
on the other hand, industrial robots optimise production quality and quantity. It is possible be-

19

“rozprawa” — 2021/5/11 — 15:22 — page 20 — #20

plan(req#1, req#2, req#3, ...)

system

Versatility of robot systems

Modular versatility
(a plan including actions required

to copmlete all requests)

task 1 task 2 task 3

system

(...)

System integrity

Natural optimalisation of the system's

overall behaviour

Ease expansion of the system

and task modification (request-task one to one relation)

Uncomplicated study and explanation

of the system behaviour

Complex inter-task relations in the system's

overall behaviour optimisation problem

Expansion of the system application

requires a complex analysis

request#1

request#2

request#3

(independent task modules

initialised as responses to user requests)

Integrated versatility

Figure 1.2: Classification of robot systems considering versatility implementation – modular
and integrated versatility

cause human safety is preserved by safety devices and the environment structure (e.g., robot
cages). In each of the applications, robots realize various tasks (e.g. in hospitals, there are nurse
assistance [24], object transportation [25], or therapy [26]–[28] applications). Therefore, some
state-of-the-art robotic systems designate a separate module, which manages the system accord-
ing to the user request [29], [30]. Moreover, these works enable an extension of the requests
available at the system deployment phase. For example, the authors of [30] utilise a task store
concept, which enables application-domain experts to deploy new tasks to the system, and each
of the tasks resolves one type of user’s request. The tasks are available in the store, and an ap-
propriate one is deployed on a robot on the robot’s user request. The other approach to managing
various user requests is to plan a multi-goal task that integrates all received requests. Tasks in
this approach are decomposed into actions combined to complete all requests. Visualisation of
the classification in the versatility implementation criterion is shown in Fig. 1.2.

Analysis of the classification in application extension direction shows persuasive arguments
for modular versatility systems. The first is that each task includes its expert knowledge defined
by concepts in a dedicated domain. Same concepts in various task contexts may have different
meanings and may direct reasoning to different conclusions. An example is a state of a door
(opened/closed) in contexts of a navigation task and a hazard detection task. In the navigation
case, an ajar door is interpreted as closed because the robot can not traverse it; however, in
the hazard detection case, such a state of the door (e.g., a passage to a confidential room) is
interpreted as opened and results with an alarm.

20

“rozprawa” — 2021/5/11 — 15:22 — page 21 — #21

The second advantage of modular versatility relates to the topic of this thesis – task manage-
ment. Independence of the tasks allows developers to reason in the task’s context and not in the
whole system’s context including the set of all possible tasks. Moreover, some tasks must be
developed with a domain expert’s support (e.g., a baking task with a baker). Thus, the analysis
of the task interruption needs to be based on expert knowledge. Based on the analysis, the robot
can compose a plan to minimise the cost of the current task interruption (e.g., by lowering the
oven’s temperature during baking to give the robot additional time to complete the interrupting
task).

Thus, the development of multiple tasks is more convenient in modular versatility systems.
Moreover, their specialisation and modification are more straightforward than modification of
one knowledge base integrating contexts of all requests, as it is integrated versatility systems. It
is challenging to analyse possible undesirable inferences and effects after adding a new concept
to the knowledge base while extending the system’s functionality.

The recent COVID-19 pandemic shows the need for easy and convenient robot tasks con-
figuration, especially in unexpected situations. Thanks to the store aggregating independent
tasks, robots available in galleries or at universities could be easily configured to help medical
personnel at hospitals [31].

The tasks can be requested via multiple human-machine interfaces (Internet of Things de-
vices [32] or a human-robot interface [33]–[35]) by different operators (e.g. medical personnel
or patients). Moreover, not all task requests have to be agreed between the operators, and there
may be a necessity to interrupt one task with another in a circumstance change. Therefore, the
robots have to manage their tasks and be able to suspend and resume them.

The above problems concern various applications of robots and make robotic systems com-
plicated. Therefore, studies propose varied specificationmethods andmodels, which ease under-
standing and facilitate implementation of the system. Usually, the works are targeted to resolve
this problem for a constrained set of systems. One of the approaches is Model-Driven Engi-
neering (MDE). It defines the model concept to ease the design procedure of a particular system
and prevent some cognitive biases [36] influence the system design at the initial phase [37].
MDE can be expressed with a formal notation based on mathematical equations and automata
theory (e.g. Embodied Agent Meta-model [38]) or with graphical domain definition languages
(e.g. SysML [39]). There is also a study combining the two approaches to express MDE in
robotics [40].

21

“rozprawa” — 2021/5/11 — 15:22 — page 22 — #22

1.3 Thesis of the dissertation

The research contributes to service robotics, addresses a problem of a responsible switch of
robot’s tasks and resolves it within the stated constraints. The following theses are formulated
as a result of the conducted research:

• A service robot can compromise the convenience and safety of humans and the safety
of robots/objects in their environment while it switches independent tasks,

• In various robot applications, different algorithms and parameters for task schedul-
ing should be used,

• The proposed model of a service robot control system (named TaskER) fosters safety
and user’s convenience while the robot manages independent, suspendable tasks in
a dynamic environment, and the model is configurable in the aspects of:

– the task scheduling algorithm,

– the parameters used to compute schedule,

– the interfaces for task requests,

– the set of tasks available for robots in the system.

1.4 Works that the study is based on

1.4.1 Model-Driven Engineering

There are various development procedures for Cyber-Physical Systems (CPSs). They are clas-
sified into three groups: conventional, hybrid and agile. The difference appears on the timeline
while switching between the typical phases: plan, conceptualise, design, develop. Thework [41]
introduces a methodology for selecting the proper procedure for an individual problem. The
CPSs may have much in common in the plan, conceptualise and design phases, although they
will result in diverse systems in the end. This is because CPSs share similar equipment, envi-
ronments, algorithms and have standard features to deal with different problems.

To facilitate the development of systems that resolve related problems or apply similar fea-
tures, the Model-Driven Engineering (MDE) emerged [42]. It is a methodology to develop
systems utilising the model concept. There are several popular definitions of the model:

1. the model is a set of declarations and rules describing the system under study [43],

2. the model is an impression of a system allowing predictions or reasoning to be made [44],

22

“rozprawa” — 2021/5/11 — 15:22 — page 23 — #23

3. the model is a reduced depiction of some system that focuses interest on the system prop-
erties relevant for a given perspective [45],

4. the model is an abstract of a system created as a substitution of the system for investigation
purposes [46].

Silva et al. [42] clue that cited authors agree that a model describes a system under study and
vice-versa. This dissertation’s definition of the model is adopted from his work: ”model is
a system that helps to define and give answers of the system under study without the need to
consider it directly”.

There are models defining constraints, general structure and operation of the systems re-
solving a given set of problems (like Smart Grid automation [47]) or applying similar features
(like energy-aware scheduling [48]). In the MDE approach, there is a concept of meta-models
defined as well. They are a model of models; therefore, a system resolving a stated problem
can be developed by adjusting a meta-model to tailor the resulting system to the problem’s re-
quirements. There are several advantages of this methodology, and the most important from this
thesis perspective are:

• facilitation of the system’s creation deriving from a meta-model,

• shorten the system development time,

• increasing reliability of the systems, as meta-model are reusable and can be corrected
based on the experience from multiple implementations.

In contrast to information systems, cyber-physical ones include hardware that percepts the
system’s environment and/or affects it. Therefore, there are dedicated models for this kind of
systems.

1.4.2 Agent-based meta-model

An agent-based approach to systems specification defines autonomous entities called agents as
primary parts of a system. Agents cooperate to solve a problem stated as a goal of the system.
Agent-based systems offer flexibility and intuitive interpretation of the system’s behaviour. The
system parts’ learning process can be expressed naturally, and the distribution of the systems’
responsibilities is straightforward. Agents can communicate with other agents and the environ-
ment to compute decisions and learn elementary actions. Their knowledge can be expressed
in various level of complexity and abstraction. Agents to affect/percept their environment and
share their knowledge with other agents according to their and the system’s goal. Agent-based

23

“rozprawa” — 2021/5/11 — 15:22 — page 24 — #24

Figure 1.3: The concept of an agent-based system based on the survey [49].

systems solve problems in various areas like civil engineering, electrical engineering or com-
puter science and robotics. A concept of agent-based meta-model proposed by Dorri et al. [49]
is shown in Fig. 1.3.

Embodied Agent Meta-model

The concept to distribute systems to agents emerged and became popular in the area of cybernetic
systems. Thanks to a natural representation of the intelligent system as cooperating agents, the
concept was adapted in robotics as Embodied Agent Meta-model (EAM) [38], [40]. Robots are
cyber-physical systems, so they sense and affect the environment; therefore, cybernetic agents
evolved to Embodied Agents. Following the Embodied AgentMeta-model, agents are described
with various structures contingent on their abilities to percept and affect the environment. There
are four general activities of an agent:

• C – reasoning of the agent,

• E – influencing the environment,

• R – sensing the environment,

• T – communicating with the other agents.

The first one is obligatory; however, the other three are facultative. So EAM enumerates eight
types of agents: C, CT, CE, CR, CET, CRT, CER, CERT. Description of the types and their
typical assignment are described in [38], [40]. An agent’s structure is decomposed into sub-
systems of various types that execute one of the above general activities. A control subsystem
is aware of the agent’s goal and manages the other subsystems to accomplish it. Besides the
control subsystem, there are two branches— the perception branch and the effect branch. They

24

“rozprawa” — 2021/5/11 — 15:22 — page 25 — #25

are decomposed into virtual and real subsystems; thus, there are virtual receptors and real re-
ceptors in the perception branch and virtual effectors and real effectors in the effect branch. The
real subsystems interact with the environment (sense or affect it), and the virtual ones interface
them to the control subsystem. Virtual receptors gather data and transform it into the form un-
derstandable by the control subsystem. Virtual effectors interpret commands from the control
subsystem and transform them into the form understandable by the real effectors. Cardinality
of the subsystems is a project-dependent decision and it is constrained by EAM.

The overall behaviour of a system modelled with EAM is a composition of all the agents’
behaviours composing the system. An agent’s behaviour is a composition of all the subsystems’
behaviours comprising the agent. Finally, the behaviour of a subsystem is defined as a Finite
State Machine (FSM). A basic behaviour gives the operation of a subsystem in a state of the
FSM. Each basic behaviour executes a transition function calculating the subsystem’s output,
a terminal condition defining the basic behaviour’s termination event, and an error condition
defining an unexpected situation that needs to be managed. The FSM states are switched if
a basic behaviour is finished (either the terminal or the error condition is satisfied). The next
state is chosen based on evaluating the initial conditions, which are logic predicates labelling
directed arcs of the FSM.

1.4.3 RAPP architecture

The RAPP1 system [30] is specified in Embodied Agent Meta-model; thus, its structure com-
prises a set of cooperating agents. The system involves a cloud computing platform andmultiple
robots. A general use case of this system is to enable developers of robotic applications to imple-
ment robot type independent applications, upload them to the store, and enable robots to execute
the applications on their users’ requests. Since a robot downloads and launches the requested
application, it governs the robot to achieve the application’s goal. The application can also re-
quest the cloud platform to support the robot with the cloud resources (e.g. storage, computation
power).

Agents and their roles in RAPP system

The RAPP system consists of agents distributed between the robot and the cloud according to the
algorithm that was published in [50], [51]. There are five classes of agents. Agents of one class
have the same role in the system and have similar functionalities allowing the role fulfilment.
Graphical specification of the services that are provided and consumed by the classes used in
RAPP is shown in Fig. 1.4:

1Robotic Applications for Delivering Smart User Empowering Applications

25

“rozprawa” — 2021/5/11 — 15:22 — page 26 — #26

computational

storage support
power and

get available
tasks

system-wide

services
common

User

service
provider

service
description

service
consumer

initialisation and
management of
modes of the

providers
operation

download
task files

task
request

robot action
execution and
sensory data
acquisition

Figure 1.4: The cooperation of the agent classes introduced in RAPP (pla, sta, ca, cla, da).

1. Core Agent (ca class) – It is a CERT-type agent managing the robot hardware. It acts as
a low-level controller of the robot and provides typical, fundamental robot behaviours to
the task-level controller—da class. Among others, the ca class commonly deliversmotion
planning and execution algorithms (e.g., [52]–[54]). As it manages all sensors of a robot,
it also processes requests of the user, downloads the requested task files (implementing
da-class agents) and launches the task. If a new request is received, the current task is
aborted straight away. Its control software operates on the robot’s computer. There is one
ca class agent for each robot in the system.

2. Platform Agent (pla class) – a CT-type agent that operates in the cloud and provides
system-wide services that require high computational power or massive storage space.
There is one pla class agent in the system.

3. Dynamic Agent (da class) – a CT-type agent that manages a specified task. Such a task is
composed of various actions, such as requests of ca class behaviours and platform agent
services. For example, a da class implements a human guide task composed of a robot
motion action (one of the ca class agent’s basic behaviour) and detection of a human in
pictures sent to the pla class agent. In the RAPP project, only one da class agent operates
on a robot at the time and executes its task. If the task is finished, the robot waits for
further requests.

4. Cloud Agent (cla class) – a CT-type agent that may be spawned in the cloud by a da
class to delegate complex task-related computation operations from the robot and store
large files in the cloud. A cla-class agent is strictly connected to the task and the da-class
agent that spawned it. There are at most as many cla- as da-class agents because it is not
obligatory for a da-class agent to spawn a cla-class agent in the cloud.

26

“rozprawa” — 2021/5/11 — 15:22 — page 27 — #27

Destroy

Task
Cloud Agent

Launch
Task

Dynamic Agent

Launch

Robot platform

Core Agent

Task

Download

RAPP platform

Task Task

Task Task

RAPP store

Task

Task
download
service

Task
download
service

user

Time

Platform Agent

0

1

2

3

4

Command

Operate

5

C
o
m
p
ila
ti
o
n

Figure 1.5: The life-cycle of a task in the RAPP system [56].

5. RAPP Store (sta class) – a CT-type agent that operates in the cloud and stores task files.
Files of a specific task are spawned on a robot upon its user request, and when launched,
become a da-class agent.

RAPP agents can be assigned to layers defined by the three-layer architecture approach [55].
Hence, the pla class belongs to the deliberation layer, the da class constitute the sequencer layer,
and the ca class is the controller layer of a robot. The role and design of a cla class depend
on a da class that is supported by it; however, the most intuitive strategy is to use cla class as
a task-context-dependent deliberation layer.

Task execution in RAPP system

The life-cycle of a typical task—Dynamic Agent in RAPP system is presented in Fig. 1.5. Im-
plemented and built tasks for all supported robots are stored in the RAPP Store (step = 0). On
a user request to complete a task (step = 1), the Core Agent downloads appropriate files from
the RAPP store (step = 2). If the task is composed of two agents— the Cloud Agent and Dy-
namic Agent, the former is launched in the cloud with the Platform Agent’s help and the latter in
the Robot platform (step = 3). Next, the Dynamic Agent takes control over the Robot platform
and using the Platform Agent’s and Cloud Agent’s services manages the user request (step = 4).
Finally, when the task is finished, the Dynamic Agent and the corresponding Cloud Agent are
terminated, and the main control of the Robot platform returns to the Core Agent (step = 5). The
detailed specification of the general structure of the RAPP system is presented in [57].

27

“rozprawa” — 2021/5/11 — 15:22 — page 28 — #28

1.5 Organisation of the research

The workflow of the research described in this dissertation can be presented in a waterfall graph
flowing from the precise definition of the problem through the proposition and evaluation of
a robot controller model ending with the analysis of its implementation (Fig. 1.6).

Definition of the notation and symbols used to specify the robot system model

Evaluation of the model by the analysis of the study requirements satisfaction

The robot system model design

A formal specification of a modelled system's behaviour

Verification of the model

Development of

a specification

tool

Development

and verification

of the problem's

solution

Analysis

of the solution

The requirements and constraints definition

Definition

of the problem

Figure 1.6: The workflow of the research, and organisation of its presentation.

The organisation of the main parts of this dissertation reflects the research workflow and is
as follows:

• First, the precise definition of the problem is provided:

– a set of use cases is defined to focus the research on real situations and problems
faced by a robot control system (Sec. 2.1),

– a set of requirements and constraints is defined to shape the model to manage the
use cases (Sec. 2.2),

– the contribution and applicability of the model are declared (Sec. 2.3).

• Next, the notation and symbols used in the model’s definition are described (Sec. 2.4).

• Subsequently, the structure and behaviour of a system based on the model is formulated
(Sec. 3.1-3.5). This part is an extended description of the work conducted for this disserta-
tion and published in [58]. It consists of an in-depth description of themodel configuration
for various applications.

• In the following Sections 4.2 and 4.3, constraints and configurations of the model for the
example robot systems are presented. The former section is an extended description of the

28

“rozprawa” — 2021/5/11 — 15:22 — page 29 — #29

system and its verification involving the TIAGo robot [59] (Fig. 4.1a). It was originally
brought in [58]. The latter section is a novel description of the Velma mobile-manipulator
verification system [60], [61] (Fig. 4.1b).

• Confrontation of the proposed solution with the study requirements is presented in
Sec. 4.2.4 and with related works in Sec. 5.1,

• The dissertation ends with a discussion of the conducted research results, and argumenta-
tion of the thesis stated in the introduction (Sec. 5.2). The study revealed some additional
problems to be resolved in future work and they are gathered in Sec. 5.3.

29

“rozprawa” — 2021/5/11 — 15:22 — page 30 — #30

30

“rozprawa” — 2021/5/11 — 15:22 — page 31 — #31

Chapter 2

Explanation of the problem and the formal
notation

In the following sections, the assumptions and constraints bounding the conducted research are
declared by the use cases in Sec. 2.1 and the requirements resulting from them in Sec. 2.2. The
initial constraints of the proposed model, specified with the use cases and the requirements,
are chosen to satisfy INCARE project [62] goals, e.g. support the elderly in retirement homes.
Additionally, the system needs to allow an easy and snappy extension of the available task set.
In Sec. 2.3, the concept of the solution, the applicability of the model and the contribution of this
work is stated. Finally, in Sec. 2.4, the formal notation used to define the model is introduced.

2.1 Considered use cases

Good practices of engineering advice to investigate the stated problem, specify use cases and
requirements first and then design the system which manages the use cases and fulfils the re-
quirements. Therefore, from the vast area of robotic research, this thesis regards systems facing
the use cases presented in Fig. 2.1 and Tab. 2.1.

There are two classes of actors who interact with the robot system: a developer and a user.
Based on the analysis of the use cases (described in the following subsections), the requirements
for the system are formulated.

2.1.1 Use case – Tasks as modular extensions

There are many possible duties that a robot can carry out for its users. For example, in the area
of helping elderly people, the study [63] identified multiple activities that threaten independent
living in mobility, self-care and social interaction. Therefore, robots should be able to manage

31

“rozprawa” — 2021/5/11 — 15:22 — page 32 — #32

UserSystem developer

<<extend>>
<<extend>>

upload tasks as

modular extensions

receive tasks

at any time

coexist in a

shared environment

Robot system

use dynamic and

argument-dependent

schedule parameters

prudent

management and

interruption of the

tasks

easy configuration of the

scheduling algorithm

Figure 2.1: The use case diagram for the systems considered in this study.

multiple tasks and extend the task set even after the system deployment according to the user’s
demands. A similar problem occurs in the smartphonemarket, and the solution to this problem is
an application store, which collects independent programs that can be downloaded and launched
upon a user’s request.

2.1.2 Use case – Easy configuration of the scheduling algorithm

Robot systems resolve various problems in many sectors, such as industry [64], healthcare [65]
and entertainment [66]. Robots in these sectors use different criteria to manage objectives, e.g.,
in industry, they maximise production quality and quantity, and in healthcare, they minimise
nurses’ and medical personnel’s time consumption and effort. In contrast, robots in the homes
of elderly people should optimise these individuals’ comfort and safety. To complete various
objectives, the robot controller must utilise a configurable scheduling algorithm that computes
schedule decisions that minimise the cumulative cost during the robot operation. Furthermore,
the cost function can change with time. It can depend on a specified task (e.g., as the delay in
water transportation to an elderly person increases, his/her discomfort and danger increases).
Schedule parameters that are used to compute the costs and schedule decisions can have var-
ious forms. Typically, priorities and temporary constraints are used as schedule parameters;
however, they can be of any form that reflects the main objective of the robot system (e.g.,
a scheduling algorithm of a system for helping elderly people can maximise their comfort as
a schedule parameter).

32

“rozprawa” — 2021/5/11 — 15:22 — page 33 — #33

Table 2.1: Use cases of the desired system

Use case name Tasks as modular extensions
Use case actor Developer
User action System action
Upload files of a new task to the
system

Store the files in the cloud such that they are available
for the robots in the system

Use case name Easy configuration of the scheduling algorithm
Use case actor Developer and user
User action System action
Users state the requirements for
the algorithm —————

Developers compose the
algorithm and inject it as
a module

Schedule tasks following the algorithm

Use case name Coexistence in a shared environment
Use case actor User
User action System action

———— Expose an interface
Use the interface to
request tasks at any time Initialise and add the task to a queue

Move around, conduct
its duties

Update the schedule parameters of tasks by following
the rules that are defined in the tasks
Interrupt tasks gently, with consideration of the safety of
users, objects and robots
Reschedule the tasks:

• repetitively,
• if any schedule parameter of the queued tasks
changes

2.1.3 Use case – Coexistence in a shared environment

Robots interact with the physical environment and affect it with actions that compose their tasks.
Although effects of the actions are immediate (turning on a cooker), the objective of the task
will be completed with a delay (e.g., boiling water on the cooker) [67]. Therefore, the robot
controller must be aware of the potential damage, injury, or loss caused by an interruption of
an ongoing task (e.g., while a new task is initiated, a cooker remains on during the new task
execution). Thus, the robot controller must consider the current state of the environment and
foresee the future effects of the current and future actions. Unfortunately, it is challenging to
design a comprehensive model of an environment for estimating its state in the future based on

33

“rozprawa” — 2021/5/11 — 15:22 — page 34 — #34

range axis

Schedule parameters

system-widetask-dependent

Schedule parameters

constancy axis

staticdynamic

factuality axis

actual

Schedule parameters

hypothetical

Figure 2.2: The classification of schedule parameters.

the robot’s actions. The known task models describe how the environment changes while the
task proceeds [68]. However, even though the effects of the robot’s actions are estimable, the
environment can also be changed by other actors (such as humans, robots, and animals).

Cooperation with humans is a complex problem, as humans differ in many aspects, and it is
not easy to model their behaviours and needs. These problems also impact the task switching for
human-robot collaboration. For example, a task’s deadline depends on high-level abstract con-
ditions1, users can change priorities of the requested tasks and can complete a part of a queued
task. Therefore, the parameters used to schedule the tasks should be dynamic and repetitively
updated. Furthermore, the scheduling algorithm should consider various sequences of the tasks
awaiting execution and choose the best one. For this reason, the system should be able to cal-
culate hypothetical schedule parameters for tasks. They are used to reflect a task execution cost
assuming a hypothetical state of the environment and the system. The classification of schedule
parameters used to manage the tasks is shown in Fig. 2.2. The classification is conducted along
three axes: range, constancy and factuality. The range axis divides schedule parameters into
system-wide that regard all available tasks and task-dependent that are compared between
tasks of the same type. The constancy axis divides schedule parameters into those set once
(static) and those that can change during the system operation (dynamic). The factuality axis
divides schedule parameters into actual ones calculated for the current state of the system and
the environment and hypothetical ones calculated for a specified hypothetical situation.

2.2 The system requirements

The following requirements for a robot controller are stated to enable the task harmonisation
feature and address the problems that are specified in the above use cases:

R1 – the robot controller maintains additional activities to enable an advised task switch. It
constantly listens to task requests and executes a schedule decision and switches tasks,
even if the robot executes another task;

1The control system of a robot must know if the user who requested task “B” can pre-empt his/her duties that are
related to the task so that the robot could finish the ongoing task, namely, task “A”, or if postponing the requested
task “B” is not acceptable.

34

“rozprawa” — 2021/5/11 — 15:22 — page 35 — #35

R2 – values of the schedule parameters (e.g., priorities) used to compute schedule deci-
sions are dynamically changing even if a task awaits execution. If one of the parameters
changes, then the scheduling algorithm is initiated. All classes of the schedule parameters
shown in Fig. 2.2 can be used in the system;

R3 – both the algorithm and the parameters that are used in the scheduling procedure depend
on a system application and must be configured based on individual system’s require-
ments;

R4 – the tasks that are available in the system are created independently and differ in terms
of knowledge base and contexts;

R5 – the developed model must raise awareness of the task developer to foresee possible
dangerous situations caused by a task switch. Additionally, the proposed task execution
method enables independent tasks to oversee changes in the environment and set vari-
ous schedule parameters. Furthermore, the ongoing task is carefully suspended before
the controller switches to another task. As a result of this, a possible robot/environment
damage or other loss due to the task interruption is limited; and

R6 – a plan of a task that awaits execution is updated before the task execution.

2.3 Contribution and applicability

In the study, the TaskER model is introduced. It extends the RAPP architecture [30] to enable
the task scheduling feature. The TaskER model is a novel approach to schedule robot tasks
and is an answer to robot tasks harmonisation problem, i.e. it shapes a robot system to flexibly
coordinate, organise and combine tasks assigned to the robot.

2.3.1 Contribution

Two approaches are available for managing task harmonisation: considering the tasks as con-
stant and uninterruptible (as in the RAPP system) or allowing the system to interrupt the ongoing
tasks. Thus, the classification of tasks, robots, and task allocation introduced in [69] needs to
be extended with an additional criterion—task harmonisation. The extended classification is
shown in Fig. 2.3. The constant-task (CT) harmonisation manifests with postponing task switch
execution until the ongoing task completes. Thus, while the robot executes a task, all received
requests will be analysed only after the current task is complete. In contrast, the interruptible-
task (IT) harmonisation enables the system to decide on the task switch as soon as the new task

35

“rozprawa” — 2021/5/11 — 15:22 — page 36 — #36

request is received. In this case, the robot can suspend the ongoing task, conduct a set of actions
of the new task and restore the previous task from suspension.

robot

single-task multi-task

task harmonisation

task

single-robot multi-robot

task assignment

instantaneous time-extended

constant-task interruptible-task

Figure 2.3: The taxonomy of tasks, robots, and task allocation described in [69] extended with
the task harmonisation criterion.

The work presented in this dissertation enables systems based on the RAPP architecture to
use an algorithm and versatile parameters to manage task switches. Task harmonisation can be
either of constant-task or interruptible task type. The parameters can be any of the previously
described classes.

None of the models nor example systems presented in the related work (Section 5.1) satisfy
all the requirements stated in Section 2.2 and describe a system that can harmonise tasks fol-
lowing the interruptible-task approach. In this dissertation, the model of a robot control system
that has the following features is introduced:

1. safe suspension and resumption of independent tasks,

2. convenient reconfiguration of a scheduling algorithm and parameters that it requires to
compute schedule decisions,

3. computation of schedule parameters that depend on a specified task context and abstract
knowledge (e.g., an estimated time for completing the task and an estimated time for
suspending the current task) and reappraisal of the parameters in reaction to changes in
the environment,

4. convenient extension of available tasks,

5. a task plan update before the task execution,

6. termination of a queued task if it is no longer beneficial/feasible,

7. task rescheduling in reaction to reappraisal of schedule parameters, and

8. online reconfiguration of task harmonisation to either constant-task or interruptible-task
model.

36

“rozprawa” — 2021/5/11 — 15:22 — page 37 — #37

event:
new task request

event:
repetitive trigger

event:
schedule parameters

have changed

System
initialisation

Initialise the task

activity:

Scheduling algorithm

activity:

Execute the task

activity:

loop

continue

Calculate schedule
parameters of the task

activity:

Request interface Harmoniser

Execute the task

activity:

loop

Calculate schedule
parameters of the task

activity:

Plan/execute/replan
the task

activity:

loop

triggers

Calculate schedule
parameters of the task

activity:

activity:
Control operation mode of the tasks

Schedule decision

Task

Suspend the ongoing
task when it is safe

activity:

Start/restart the upcoming task

activity:

switch the ongoing task

start a task

Execute the task

activity:
Execute the task

activity:suspension possibility
evaluation

activity:

Legend:
- A logic conjunction of
 the input control signals

- An event generating

a control signal

- A logic alternative of

 the input signals

- A decision node directing the

control flow to one of the outputs

- An activity to be performed

- A directed flow of control

in the system

Figure 2.4: The procedure for handling new task requests and evaluating dynamically changing
schedule parameters results in replacing or continuing the ongoing task. The arrows show the
control flow between the abstract activities of the abstract parts of the system. The logic con-
junction used in the diagram holds handling a new schedule decision while the previous one is
being managed. The decisions are not queued; therefore, the last decision is managed when it is
possible. The events of Harmoniser trigger the Scheduling algorithm in both event and timely
manner. The activity ’initialise the task’ invokes a new Dynamic Agent handling the requested
task.

Furthermore, the formal notation for describing the model and the systems inherited from
it is proposed. The notation helps the systems’ developers in various aspects, for example,
in relating analogous entities defined in different approaches, in the efficient diagnosis of the
system state, or in making the model definition more precise than if it was defined by ambiguous
relations and entities.

Finally, the implementation of the TaskER framework is described. It follows the model and
supports the development of various tasks and scheduling algorithms application. The general
concept of the harmonisation procedure described formally in the model is illustrated in Fig. 2.4.
The harmoniser part was not considered in RAPP, and the request interface was a part of a ca
class agent; therefore, in the TaskER model, additional agent classes cover the roles of these
parts. The concept shown in Fig. 2.4 is formalised in the model and visualised in Fig. 3.8.

37

“rozprawa” — 2021/5/11 — 15:22 — page 38 — #38

There are three main parts in the harmonisation procedure: the request interface, the tasks
and the harmoniser. The request interface defines the structure of the task requests. Each task
calculates its schedule parameters (used to compute the schedule by the harmoniser part), is
responsible for its plan management and execution and shares an interface to manage its mode
of operation. Based on the schedule parameters received from the tasks, the harmoniser part
manages their operation modes as it is defined in the scheduling algorithm. The proposed har-
monisation procedure preventsmultiple tasks from executing their actions at once, thus, prevents
the robot to behave chaotically.

2.3.2 Constraints and applicability

The model is based on a component structure and describes the required components and rec-
ommended interactions between them to handle task suspension and resumption. Additionally,
tasks must be divided into stages that are classified as suspendable or blocking. The former ones
can be interrupted, and the other cannot. A task executing a blocking stage holds the interruption
until the task reaches a first suspendable stage.

The proposed approach harmonises tasks conducted by a robot and not tasks of a whole
system that consists of multiple robots. However, a multi-robot system also benefits from the
proposed model because the model is applicable to each robot of the multi-robot system.

Referencing the extended classification of robots, tasks, and task allocations [69], this study
considers:

1. single-task robots that can execute at most one task at a time,

2. single-robot tasks that require exactly one robot for completion, and

3. instantaneous-assignment task allocation that corresponds to the system that does not pos-
sess any information suitable for planning future task allocations.

Such a classified system consists of single-task robots that conduct single-robot tasks. However,
the system may contain multiple robots that can complete numerous types of single-robot tasks,
e.g., object transportation, hazard detection, and object search.

The TaskER model is implemented as a framework built upon ROS, and the model extends
the RAPP architecture. The TaskER model can be applied to a system that uses FSM as the task
model, at least at the top level. An exemplary integration of TaskER with tasks modelled with
Petri Nets is presented in this dissertation. The model can be used in a system with knowledge
representation in the PDDL [70] to harmonise the sequences deployed by the planning compo-
nent. The TaskER model allows da-class agents to compute and send task-related parameters to

38

“rozprawa” — 2021/5/11 — 15:22 — page 39 — #39

the scheduling algorithm to influence the schedule decision (e.g., the estimated time for complet-
ing the task and the estimated time for suspending the current task). The above assumptions are
not restrictive; however, they allow for developing a multi-tasking robot with interruptible-task
harmonisation.

2.4 Notation of the model specification

Following the Embodied Agent Meta-model, the agents are abstract parts building a system.
They communicate with each other and have the imperative to use their resources to com-
plete their objectives. A system’s responsibilities are divided into objectives that are distributed
among the agents. It should be noted that the symbols in indexes used in the notation are divided
by commas, so multi-letter symbols should not be confused with multiple single-letter symbols.

It is assumed that the system can involve a set of robots; however, the tasks of each of
them are harmonised independently. The set of the robots is designated as R. The set of all
agents of the system (denoted as A) is decomposed into two sets of agents. The first set (de-
noted as sA) consists of agents with system-wide responsibility (e.g., general services for all
robots in the system, interfaces to other systems, and big data storage and services). The sec-
ond set (denoted as RA) consists of agents that manage robots’ hardware and control the robots
to execute tasks. A set of agents associated with a specified robot is denoted as rA, where
r is the robot’s name (r ∈ R). To denote a subset of the above sets (sA, RA, rA) that contains
agents of a specified class hAu is used, where h ∈ {s, R, r} specifies the symbol of the set, and
u ∈ {exa, da, cla, tha1, tra1, pla, sta} specifies the class of the agents. The sets and subsets
are defined formally by (2.1)-(2.4).

A = sA ∪ RA, (2.1)
sA = sAtra ∪ sApla ∪ sAsta, (2.2)

RA = RAexa ∪ RAda ∪ RAtha ∪ RAcla ∪ RAtra =
∪
r∈R

rA, (2.3)

rA = rAexa ∪ rAda ∪ rAtha ∪ rAcla ∪ rAtra. (2.4)

An agent is designated as waj, where w ∈ (R ∪ {s}), and j is a unique identifier of the agent
(e.g., r1a12). Ifw ∈ R, then the agent is associatedwith a robot, whereas ifw = s, then the agent is
a system-wide agent. Agents consist of subsystems of various classes (control subsystem, virtual
and real receptors and effectors). This dissertation describes thoroughly only the two agent
classes (da, tha) that are CT type, and they consist of a single control subsystem only. Therefore,

1 new agent classes that are introduced in this dissertation in Section 3

39

“rozprawa” — 2021/5/11 — 15:22 — page 40 — #40

Figure 2.5: The contextual and corresponding non-contextual notation of an inter-agent com-
munication, where cα is a control subsystem of aα.

in this work, the subsystem identifiers are omitted in the notation. The other agent classes appear
only in the model decomposition in the inter-agent communication specification of da and tha
agent classes. Subsystems communicate via communication buffers, and the buffers have at
least one field for data. In this work, only the inter-agent communication is specified, and the
inter-subsystem is out of its scope. Therefore, there are input buffers—T

xcj,g[u] and output
buffers—T

ycj,g[u], where u is an identifier of the buffer field, and g is an identifier of the agent
to which the buffer is connected. Links between buffers are specified on a structure diagramwith
either contextual or non-contextual notation, as presented in Fig. 2.5. Subsystems can store data
in their internal memory. The internal memory of a control subsystem is denoted as ccj .

Management of an agent behaviour is defined by a Finite-State Machine, which is denoted
as FSMj . The finite-state machine is composed of states, which for a specified FSMj , are de-
noted as Ss

j , where s is an identifier of the state. A hierarchical FSM is an FSM that includes
at least one super state that is defined by another FSM. The FSM that defines the super state
Ss
j is denoted as FSMj,s. A basic behaviour (denoted as Bb

j) defines the operation of a single-
subsystem agent j, where b is an identifier of the basic behaviour. The basic behaviour Bb

j is
assigned to Ss

j if b = s. The model of the basic behaviour is derived from the universal architec-
tural pattern and specification method [38] and is shown in Fig. 2.6. Terminal conditions are
logic functions assigned to the basic behaviours and define an event that terminates the basic
behaviour. They are denoted as tcj,b. The transition function f kj processes data from input
buffers and saves it to output buffers, where k is an identifier of the function. The transition
function f kj is computed in the basic behaviour Bb

j if k = b. Transition functions can be divided
into primitive transition functions; such a function is denoted as pf pj , where p is its identi-
fier. Transitions between states that compose an FSM are triggered by logic functions called

40

“rozprawa” — 2021/5/11 — 15:22 — page 41 — #41

Figure 2.6: The model of a basic behaviour derived from [38].

Table 2.2: Symbols and elements derived from Embodied Agent Meta-model reduced to CT
type agent specification. The indexes designate: α – the agent’s scope (name of a robot associ-
ated with an agent or s for system-wide agents), ag – an agent’s name, interlocutor – a name of
an agent connected to a buffer of the agent ag, field – a name of a field of a buffer or memory,
superState – an identifier of a super state, id – an identifier of a specification element.

initial conditions denoted as icj,o, where o is an identifier of the initial condition. The model of
basic behaviours and their composition in the FSM results with the following control flow. The
subsequent basic behaviour (e.g. B2

j) is executed if the terminal condition of the current basic
behaviour (e.g. B1

j) is satisfied and if the initial condition between the states S1
j and S2

j is True.
The notation elements’ and their symbols are shown collectively in Tab. 2.2.

41

“rozprawa” — 2021/5/11 — 15:22 — page 42 — #42

42

“rozprawa” — 2021/5/11 — 15:22 — page 43 — #43

Chapter 3

The robot system model enabling prudent
task management

In this chapter, the model of the system satisfying the stated requirements is presented. It is
defined with the use of the formal notation and follows the Embodied Agent Meta-model. The
proposed model is holistically specified on the agent layer; however, the three agent classes
introduced in this work are thoroughly described according to their internal structures and be-
haviours. The general structure of the model is described roughly in Sec. 3.1 and the agents
composing it are introduced in Sec. 3.2, Sec. 3.3 and Sec. 3.4. Subsequently, in Sec. 3.5 an
analysis of the system’s behaviour is presented.

3.1 The system structure

According to the requirements R1-R6, the robot controller may be requested to begin a task while
it executes another task (da class). In contrast to the RAPP approach, the TaskER model allows
for multiple da-class agents to operate on one robot, but the model of da class differs from that
in the RAPP project. Therefore, there is a set of da-class agents that operate on a specified robot,
and it is designated as rAda, where r is an identifier of the robot.

To satisfy the requirements of this study, there are additional agent classes introduced, which
were not considered in the RAPP system—task harmoniser (tha class) and executor agent
(exa class) and task requester (tra class). There is one tha-class agent per robot
(|rAtha| = 1) in the system, and the agent schedules rAda agents based on a scheduling algo-
rithm that is defined in a transition function of the tha-class agent. The algorithm uses either
task-context dependent or system-wide schedule parameters. The former ones are computed
by rAda agents, and the other are computed by the scheduling algorithm. A tha-class agent

43

“rozprawa” — 2021/5/11 — 15:22 — page 44 — #44

can be requested at any time by a tra-class agent to launch a da-class agent on the robot with
which the tha-class agent is associated. Additionally, each robot in the system is controlled by
exa-class agent. It is responsible for the robot hardware management. It serves robot’s core
functionality; it shares data from the robot’s sensors and exposes an interface to call the robot
actions. In Fig. 3.1, the agent classes and services they provide and consume are presented.

computational

storage support
power and

get available
tasks

system-wide

services
common

User

service
provider

service
description

service
consumer

initialisation and
management of
modes of the

providers
operation

download
task files

task
request

task
request

robot action
execution and
sensory data

Figure 3.1: Cooperation of the agent classes introduced in RAPP: pla, sta, ca, cla, da
(Fig. 1.4) modified by the proposed decomposition of ca to tra, tha and exa classes.

Implementations of the TaskER model may involve multiple tra-class agents composed of
different subsystems that play the roles of various interfaces (e.g., a home automation system,
a smartphone, or a human-robot interface). From this study perspective, the structure and be-
haviours of a tra-class agent are not important. However, the interfaces of tra-class agents
are. Hence, they are described in the tha-class agent section (Section 3.3) and the tra-class
agent section (Section 3.4).

Based on the RAPP architecture and descriptions of tha-class and tra-class agents, the
cardinalities of the agent sets1 composing the system are stated:

sAexa = sAtha = sAda = ∅, (3.1)

|sApla| = |sAsta| = 1, (3.2)
RApla = RAsta = ∅, (3.3)

∀r ∈ R : |rAexa| = |rAtha| = 1 ∧ |rAcla| ≤ |rAda|, (3.4)

∀r ∈ R : |rAtra| = 0 ∨ |rAtra| = 1. (3.5)

1The glossary at the beginning of the dissertation introduces the symbols used to denote the agent sets.

44

“rozprawa” — 2021/5/11 — 15:22 — page 45 — #45

Figure 3.2: The model of a system that is composed of R set of robots. The model contains
the following agents that are associated with the example robot r ∈ R: rady ∈ rAda; raha that is
a tha-class agent of the robot r; raex that is of exa class; rarr ∈ rAtra that is of tra-class agent
associated with the robot r; and rAcla that is a set of cla-class agents that are associated with the
agents of rAda. The model consists of system-wide agents that communicate with all the robots
in the system: sapl of pla class, sast of sta class, and agents of sAtra set.

A tra-class agent can be associated with either a specified robot or be system-wide. Follow-
ing (3.5), each robot can have one tra-class agent associated with it or none. If there is one, it
is denoted as αarr, where α ∈ R. Such an agent is used in systems that enable robots to collect
user requests with their receptors.

In Fig. 3.2, the general structure of the TaskER model is presented. It shows a cross-section
of a multi-robot system revealing in details structure in the layer of the robot named r. The agent
sets compose agents shared between robots and agents controlling the robot. Communication
buffers are presented in the non-contextual notation that is presented in Fig. 2.5. The four green-
marked agents are the primary concern of this dissertation as their responsibility is associated
with the task harmonisation. The other agents support the marked ones with cloud computing,
storage and system-common services.

45

“rozprawa” — 2021/5/11 — 15:22 — page 46 — #46

One of the model’s crucial constraints is the independent management of the tasks delegated
to a specified robot. Therefore, in the next sections, the following instances of the agent classes
and cardinalities of the agent sets are assumed:

|R| = 1 ⇐⇒ |RAexa| = 1 ∧ |RAtha| = 1, (3.6)

R = {r}, rAexa = {raex}, rAtha = {raha}, rAtra = ∅, (3.7)
sAtra = {satr}, sApla = {sapl}, sAsta = {sast}. (3.8)

3.2 The Dynamic Agent class

A da class plays a task bearer role and conducts basic behaviours required for the task comple-
tion, along with additional basic behaviours that are defined in TaskER to satisfy the require-
ments of the study. Moreover, TaskER specifies the structure of da-class agents, their FSMs
and communication buffers. The model of da-class agents is demonstrated with an example
agent—rady that is associated with the robot r (rady ∈ rAda). In the following considerations, the
conditions (3.6)-(3.8) are satisfied, and racl supports rady (3.9):

rady ∈ rAda,
rAcla = {racl}, racl ~ rady, (3.9)

where ’~’ denotes the support relation between a cla-class agent and a da-class agent.

3.2.1 The buffers of da-class agents

Each agent of da class has 10 buffers. Visualisation of the buffers in the non-contextual notation,
which is used in the following description, is shown in Fig. 3.3. The first pair of buffers, namely,
T
xcdy,ex[rob] and T

ycdy,ex[rob], is used to communicate with raex to:

1. command the robot (Tycdy,ex[rob]),

2. receive information describing the robot and its environment states (Txcdy,ex[rob]).

The second pair, namely, Txcdy,cl[cloud] and T
ycdy,cl[cloud], is used to communicate with racl, e.g.,

to request complex computation services or algorithms that require user data that are stored in
the cloud.

46

“rozprawa” — 2021/5/11 — 15:22 — page 47 — #47

Figure 3.3: The buffers of da-class agents.

Transitions of FSMdy (Fig. 3.4a) are triggered based on the value of Txcdy,ha[cmd] buffer (3.10),
where data consists of any constraints or arguments that are required by rady for handling the
command. However, the data field of the buffer is not obligatory for systems that utilise the
proposed model:

T
xcdy,ha[cmd] = [triggerF lag, data], (3.10)

triggerF lag ∈ {start, susp, term}. (3.11)

If the triggerF lag value consists of an identifier of an initial condition that is defined in
FSMdy, then the initial condition is triggered (3.12)-(3.14):

T
xcdy,ha[cmd] = [start, data] ⇒ icdy,start = true, (3.12)
T
xcdy,ha[cmd] = [susp, data] ⇒ icdy,susp = true, (3.13)
T
xcdy,ha[cmd] = [term, data] ⇒ icdy,term = true. (3.14)

Buffer T
ycdy,ha[report] transmits the rady agent’s report to raha. The report contains at least an

identifier of the current state of FSMdy:

T
ycdy,ha[report] = fsmState, (3.15)

fsmState ∈ {initComm, compSP, upTsk, exeTsk, susp, wait, end}.

47

“rozprawa” — 2021/5/11 — 15:22 — page 48 — #48

entry

end

(a) The graph of the top level of a hierarchical FSM that governs behaviour of a da-class agent, where
super states Sinitdy and Scmd

dy are specified in Fig. 3.4b and in Fig. 3.4c, respectively.

entry
exit

(b) The internal FSM of Sinitdy .

v

exit

entry

(c) The internal FSM of Scmd
dy .

Figure 3.4: The hierarchical finite-state machine governing the operation of a da class shown for
an example agent rady.The initial conditions of the edges without labels are logical complements
of the predicates defined by all labelled alternative edges originated from the same state.

Additionally, this buffer may be extended with task-dependent schedule parameters, which must
be calculated by rady:

T
ycdy,ha[report] = [fsmState, scheduleParams]. (3.16)

The structure of the scheduleParams field depends on the scheduling algorithm defined for the
robot (e.g., an estimated time for completing the task, time for suspending the current task, or
travel distance can be used). Therefore, it is configurable and not expressed strictly in the model.
They need to be defined in the process of the model implementation for given requirements.

48

“rozprawa” — 2021/5/11 — 15:22 — page 49 — #49

A pair of buffers (Txcdy,ha[reqSP] and T
ycdy,ha[reqSP]) are used to deliver hypothetical sched-

ule parameters that are calculated by rady on a request from raha. The input buffer contains an
identifier of the schedule parameter (spID) and the arguments that are required for calculating
the schedule parameter (args). The output buffer stores the value of the requested parameter
(scheduleParam). The buffers have the following structures:

T
xcdy,ha[reqSP] = [spID, args], (3.17)

T
ycdy,ha[reqSP] = [scheduleParam]. (3.18)

An example schedule parameter that is hypothetical is the estimated time for completing a task
under specified conditions (e.g., an initial robot pose). The T

xcdy,ha[reqSP] and T
ycdy,ha[reqSP]

buffers are used only in the systems using hypothetical schedule parameters.
Finally, a couple of buffers— T

xcdy,pl[srv] and T
ycdy,pl[srv] is used to communicate with rapl to

call system-common services that are supplied by rapl, such as text-to-speech or speech-to-text.

3.2.2 The FSM of da-class agents

A behaviour of a da-class agent is managed by a hierarchical FSM (HFSM). An example for
rady—FSMdy is shown in Fig. 3.4a. The HFSM consists of three states at the top-level:

1. Sinit
dy – the process of rady is initiated in the robot’s computer. The internal FSM of this
state is presented in Fig. 3.4b. rady is allowed to pull data from raex to compute schedule
parameters and obtain addresses of remote services. However, rady does not command raex
to execute the task that is implemented in rady. This state consists of two internal states:

(a) SinitComm
dy – rady creates communication interfaces and initialises the values of its
internal memory ccdy. The behaviour executed in this state (BinitComm

dy) is executed
once; therefore, its terminal condition equals True: tcdy,initComm:= True;

(b) ScompSP
dy – rady sets the value of T

ycdy,ha[report] (3.15)-(3.16), and if the system uses
task-dependent schedule parameters, then rady computes these task-dependent sched-
ule parameters. The parameters are further used by raha to manage the operation of
all agents from rAda. The behaviour executed in this state (BcompSP

dy) is executed
repetitively until the agent is started or terminated by raha; therefore, the terminal
condition of BcompSP

dy is:

tcdy,compSP := T
xcdy,ha[cmd] = [start, data] ∨ T

xcdy,ha[cmd] = [term, data]. (3.19)

49

“rozprawa” — 2021/5/11 — 15:22 — page 50 — #50

entry

exit

v

Figure 3.5: Integration of the TaskER model with example task stages given by Petri Nets.

2. Scmd
dy – rady commands raex to complete its task. This state is represented by a hierarchical
FSM (Fig. 3.4c), where

(a) SexeTsk
dy is specified by FSMdy,exeTsk that describes the task of rady, and each state
of this FSM represents a stage of the task. The states of the FSM are denoted as
Sstage,k
dy , where k is an identifier of the stage. The stages can be defined by any task
model (Petri Net, Behaviour tree, DSL, FSM). Only the top-level of the task must be
specified as an FSM. An example FSMdy,exeTsk that integrates Petri Net stages with
TaskER is presented in Fig. 3.5. The terminal conditions of the basic behaviours
executed in this state depend on the type of a given stage and are specified in the
next section.

(b) SupTsk
dy modifies or re-plans task defined in FSMdy,exeTsk to adapt it to changes in
the environment that occurred when rady was waiting for its task execution. The be-
haviour executed in this state (BupTsk

dy) is executed once; therefore, tcdy,upTsk:= True;

(c) Ssusp
dy consists of an internal FSM that is composed of two states: SgenSusp

dy and
SexeSusp
dy . The first creates FSMdy,exeSusp for governing behaviours of the robot that
are required for suspending the ongoing task safely. The second state—SexeSusp

dy , is
a super state that executes FSMdy,exeSusp. Ssusp

dy is responsible for conducting a set
of actions to:

i. set the robot and its environment in safe conditions to execute the interrupting
task,

ii. enable resumption of the current task.

50

“rozprawa” — 2021/5/11 — 15:22 — page 51 — #51

3. Swait
dy – rady awaits resumption, sets a value of T

ycdy,ha[report] and calculates schedule pa-
rameters. The basic behaviour executed in this state (Bwait

dy) is terminated if the agent’s
task is started or terminated by raha; therefore:

tcdy,wait :=
T
xcdy,ha[cmd] = [start, data] ∨ T

xcdy,ha[cmd] = [term, data]. (3.20)

If |rAda| ≥ 1, then only one agent from the set rAda can be in the state Scmd
dy and execute

its task. The other agents can be in the other states. The initial conditions of FSMdy, namely,
icdy,start, icdy,term, and icdy,susp, are set by raha via inter-agent connection; hence, raha must not
allow for more than one agent from rAda to be in Scmd

dy . rady sets only the icdy,term condition. It
happens if the agent’s task is aborted by a user or is no longer feasible.

3.2.3 The basic behaviours of da-class agents

The schedule parameters’ computation – BcompSP
dy The transition function that is calculated

in BcompSP
dy , namely, f compSP

dy consists of one primitive transition function (pf compSP
dy). The lat-

ter is further decomposed into multiple primitive transition functions. Each of them computes
a distinct schedule parameter (e.g., the priority and the estimated time for completing the task
that is implemented in rady). Equation (3.21) defines the composition of the primitive transition
functions in f compSP

dy and the events triggering each of them.

f compSP
dy = pf compSP

dy =



pf reportdy , if timer(ccdy[stsRate])

pf sp,1dy , if I1

pf sp,2dy , if I2

..., if ...

pf sp,pdy , if Ip

, (3.21)

where pf reportdy , with the frequency defined in the stsRate field of the agent’s memory (ccdy), sets
the fsmState field of the T

ycdy,ha[report] buffer (given by (3.15) or (3.16)) and p is a number
of schedule parameters that f compSP

dy computes. If the system uses task-dependent schedule pa-
rameters, then p > 0; if it does not, then p = 0. Each of the primitive transition functions
pf sp,1dy -pf sp,pdy fills a part of the scheduleParams field (3.16), which the function calculates.
The symbol I id denotes a logic sentence that activates the pf sp,iddy primitive transition function.
I id can be related to the T

xcdy,ha[reqSP] buffer; hence, pf sp,iddy will be triggered upon a request
from raha in consideration of (3.17):

I id : T
xcdy,ha[reqSP] = [id, args] (3.22)

51

“rozprawa” — 2021/5/11 — 15:22 — page 52 — #52

An example of hypothetical schedule parameters is the robot path distance in the task execution.
An example argument for a hypothetical parameter can be a start position of a robot. It can be
beneficial to establish the best path for the robot managing multiple transportation tasks. For
this example id = 1, args = robotPosition.

The task update – BupTsk
dy The transition function of BupTsk

dy (namely, fupTsk
dy) creates

FSMdy,exeTsk. Example methods can configure of a statically defined template of an FSM or
create an entirely new FSM using planning algorithms.

The task execution – FSMdy,exeTsk The transition function f stage,kdy and the terminal condition
tcdy,stage,k define the basic behaviour Bstage,k

dy of the kth task stage. Each f stage,kdy is divided into
two primitive transition functions:

1. pf stage,kdy – commands raex to achieve an objective of the kth stage (e.g., reaching a specified
destination),

2. pf compSP
dy – computes schedule parameters and updates T

ycdy,ha[report] during SexeTsk
dy . It

was formally defined in (3.21). The schedule parameters are used by raha to schedule rAda

agents.

Therefore, the transition function is specified with the following composition:

f stage,kdy =

pf stage,kdy

pf compSP
dy

, (3.23)

where k is an identifier of the task stage. Some stages of a task may involve operations that
may not be interrupted, e.g., due to an unstable state of the manipulated object or to an unknown
suspension or resumption transition function for this stage. To prevent such a threat, the task
stages are classified in the TaskER model to:

1. suspendable – the task may be suspended in this stage. The system can switch to another
task with the ability to resume the current task in the future;

2. blocking – the taskmay not be suspended in this stage, e.g. due to carrying out an unstable
process or resume of the current task would be impossible.

The suspendable stages of a task that is conducted by rady compose the set Udy, and the blocking
stages compose the set Ldy. Each of the task stage types has an individual definition of a terminal
condition for terminating Bstage,k

dy . The terminal condition of a blocking-type stage is the satis-
faction of the objective condition of the stage, e.g., the robot is at its destination for a navigation

52

“rozprawa” — 2021/5/11 — 15:22 — page 53 — #53

stage (3.24). A terminal condition of a suspendable stage is satisfaction of an objective condition
of the stage with an alternative icdy,susp and icdy,term conditions (3.25). Assuming the objective
conditions tcdy,stage,k,goal and tcdy,stage,j,goal of a blocking stage Sstage,k

dy and a suspendable stage
Sstage,j
dy :

tcdy,stage,k :=tcdy,stage,k,goal, (3.24)

tcdy,stage,j :=tcdy,stage,j,goal ∨
(
T
xcdy,ha[cmd] = [susp, data]

)
(3.25)

∨
(
T
xcdy,ha[cmd] = [term, data]

)
.

Thus, if raha triggers icdy,susp or icdy,term condition during the operation of Bstage,j
dy , then the basic

behaviour is terminated and Sstage,j
dy is switched to Ssusp

dy .

The task suspension generation – BgenSusp
dy The transition function f genSuspdy of BgenSusp

dy cre-
ates the FSM (namely, FSMdy,exeSusp) that utilises behaviours of the agent and inter-agent com-
munication to suspend the ongoing task safely (e.g., commands for raex). The transition function
f genSuspdy may be defined by the task developer in the form of a decision tree, which leads to stat-
ically defined suspension strategies (given by FSMs). The second approach to define f genSuspdy

is to provide a planner that considers the present state of the world and creates FSMdy,exeSusp.

The task suspension execution – FSMdy,exeSusp Operation of rady in SexeSusp
dy is specified with

the internal FSM of the state, namely, FSMdy,exeSusp, which was defined in the previous state.

Waiting for the task execution – Bwait
dy The transition function of Bwait

dy (denoted as fwait
dy) is

identical with f compSP
dy that is defined in (3.21):

fwait
dy := f compSP

dy . (3.26)

3.3 The Task Harmoniser Agent class

Agents of tha class have a similar role in TaskER model to schedulers in operating systems.
They assign tasks for execution and manage the tasks’ modes of operation. In this analysis raha
is used as an example tha-class agent. Agents of this class receive and process requests for
new tasks from tra-class agents and schedule tasks assigned to the robot associated with the
tha-class agent. The raha agent switches the states of the rAda set to:

53

“rozprawa” — 2021/5/11 — 15:22 — page 54 — #54

Table 3.1: Initial values of ccha fields that are set by f initha , where DAID is an identifier of a da-class
agent, and x is a value that is set by an individual system’s developer.

ccha field example initial value type/unit
ccha[sFreq] x float/Hz
ccha[idleDA] empty array[N]
ccha[exeDA] empty DAID
ccha[irrDA] empty DAID

1. optimise a specified scheduling criterion (e.g., the highest priority first, the shortest job
first, or the shortest remaining time first);

2. enable a controlled suspension and resumption of the tasks that are implemented in da-
class agents.

3.3.1 The buffers and memory of raha

The memory of raha (namely, ccha) consists of multiple named fields; Tab. 3.1 presents a mini-
mal set of them. rAda agents are scheduled by raha by assignment of rAda agents’ identifiers to
ccha[exeDA], ccha[irrDA] and ccha[idleDA]. The first field stores an identifier of an agent of the
set rAda that is currently in Scmd

dy and executes its task. Such an agent is denoted with the symbol
raexeDA. The field ccha[irrDA] stores an identifier of an agent of the set rAda that was chosen
by a scheduling algorithm to replace raexeDA. This agent is referred to by the symbol rairrDA.
ccha[idleDA] is a one-dimensional array of size N that is filled with identifiers of the agents that
belong to the set Dr:

Dr =
rAda \

{
raexeDA, rairrDA

}
, (3.27)

|Dr| = N. (3.28)

In Fig. 3.6 the visualisation of all tha-class agent buffers is shown.
Management of the operation of an example rady∈rAda is executed by sending state switch

requests via the buffer T
ycha,dy[cmd] to T

xcdy,ha[cmd]. A state switch request consists of one of
the values that is defined in (3.11). As the cardinality of rAda may exceed 1, there is a set that
contains buffers for managing the states of rAda agents:

T
ycha,dy[cmd] ∈ ybsha,rAda [cmd] ⇐⇒ rady ∈ rAda, (3.29)

|ybsha,rAda [cmd]| = |rAda|.

54

“rozprawa” — 2021/5/11 — 15:22 — page 55 — #55

Manage the

FSMs of

Receive
reports from
 agents

Request hypothetical
(argument-dependent)
schedule parameters

Call system-common
services e.g. the
weather service

Get files
of the
tasks

Manage task requests Get the robot and environment states

Figure 3.6: The buffers of the agents of tha class.

The buffers T
xcha,tr[task] and T

ycha,tr[task] are an interface (denoted as taskIFha,tr) for the
satr agent of tra class. As the cardinality of the sum rAtra∪sAtra may exceed 1, there is a set of
input and output buffers that connect raha with all tra-class agents in the system:

taskIFha,tr := {Txcha,tr[task], Tycha,tr[task]}, (3.30)

taskIFha,tr ∈ bsha,Atra [task] ⇔ atr ∈ (rAtra∪sAtra), (3.31)

where bsha,Atra [task] is the set of the task buffers of raha for receiving new task requests and re-
sponding to them. Moreover, the model supplies raha with two sets of buffers, namely,

xbsha,rAda [report] and bsha,rAda [reqSP], for collecting status and task-dependent schedule pa-
rameters from the rAda agents:

T
xcha,dy[report] ∈ xbsha,rAda [report] ⇔ rady ∈ rAda, (3.32){

T
xcha,dy[reqSP], Tycha,dy[reqSP]

}
∈ bsha,rAda [reqSP] ⇔ rady ∈ rAda. (3.33)

The buffers of these sets are used to:

1. xbsha,rAda [report] – collect the current states of the rAda agents and their schedule param-
eters (3.15), (3.16);

2. bsha,rAda [reqSP] – request and receive hypothetical schedule parameters from the rAda

agents.

55

“rozprawa” — 2021/5/11 — 15:22 — page 56 — #56

entry exit

Figure 3.7: Finite state machine that governs the behaviour of raha.

There is a pair of buffers, namely, Tycha,st[app] and T
xcha,st[app], for collecting files of the tasks

that are stored in sast. Additionally, raha consists of the buffers T
xcha,pl[srv] and T

ycha,pl[srv] that
are used to communicate with sapl to call system-common services supplied by sapl (e.g., the
current list of the tasks that are available in sast).

Finally, there is the input buffer T
xcha,ex[rob] that can be used by the scheduling algorithm

implemented in raha to obtain current states of the robot and its environment.

3.3.2 The basic behaviours of tha-class agents

Management of raha basic behaviours is specified by the FSM shown in Fig. 3.7. The predicates
that define the initial conditions of the FSM are given by (3.34)-(3.38).

icha,init :=
(
∃x ∈ bsha,Atra [task] : newData(x) = True

)
∧ ¬icha,term, (3.34)

icha,shdl :=
(
timer(ccha[sFreq]) ∨ shdlevent

)
∧ ¬

(
icha,term ∨ icha,init

)
, (3.35)

icha,cmd :=
(
ccha[irrDA] ̸= ∅ ∨ termevent

)
∧ ¬

(
icha,init ∨ icha,shdl ∨ icha,term

)
, (3.36)

shdlevent :=(ccha[exeDA] = ∅ ∧ ccha[irrDA] = ∅ ∧ ccha[idleDA] ̸= ∅)

∨ newData(xbsha,rAda [report]), (3.37)

termevent :=∃α ∈ xbsha,rAda [report] : α = {end}, (3.38)

where newData(x) represents a trigger set by data changes in the x buffer and timer(x) rep-
resents a repetitive trigger set with a frequency specified by x. Interpretations of the initial
conditions are as follows:

56

“rozprawa” — 2021/5/11 — 15:22 — page 57 — #57

• icha,init – is True, if a new task request comes and raha is not shutting down,

• shdlevent – is True, if:

– there is no da-class agent executing its task,

– there is no da-class agent set as candidate for execution,

– there are da-class agents awaiting for execution,

– any of da-class agents updates its report,

• icha,shdl – is True, with a given frequency or if shdlevent is satisfied, but raha is not termi-
nated and icha,init is not satisfied,

• termevent – is True, if any of da-class agents ended (a buffer from xbsha,rAda [report] set
consists the flag end,

• icha,cmd – is True, if there is a candidate agent for task execution or termevent is satisfied
(a da-class agent needs to be terminated), but raha is not terminated and icha,init and icha,shdl
are not satisfied,

The FSM of raha is composed of:

1. Sinit
ha – the basic behaviour executed in this state depends on the implementation of raha as
it is responsible for the agent’s memory (ccha) initialisation and the connection of the raha
buffers. The terminal condition of this basic behaviour is: tcha,init := True.

2. Sidle
ha – the basic behaviour executed in this state is composed of an empty transition func-
tion and its terminal condition given by (3.39):

tcha,idle := icha,term ∨ icha,init ∨ icha,shdl ∨ icha,cmd. (3.39)

3. SinitDA
ha – the agent reads data from T

xcha,tr[task], assigns an identifier to the received task
(e.g., dy), sets up rady and adds it to Dr. Finally, the process of FSMdy of the rady is initiated,
and the initial arguments are passed from the requester to the process of rady. The basic
behaviour executed in this state consists of the transition function given by (3.40):

ccha[idleDA] := f initDA
ha

(
bsha,Atra [task]

)
, (3.40)

and the terminal condition given by (3.41):

tcha,initDA := True. (3.41)

57

“rozprawa” — 2021/5/11 — 15:22 — page 58 — #58

4. Sshdl
ha – the agent executes a specified scheduling algorithm. The algorithm results with
a schedule decision. The transition function that executes the algorithm takes values of the
schedule parameters (received via bsha,rAda [report] and bsha,rAda [reqSP]) and assigns Dr

agents to the field ccha[irrDA]. The algorithm of this transition function is configurable
because it depends on a specified system and its objectives; hence, it is left to be defined
for a specific robot system. The transition function of the basic behaviour executed in this
state is given by (3.42):

ccha[irrDA] := f shdlha

(
xbsha,rAda [report], bsha,rAda [reqSP]

)
, (3.42)

and the behaviour’s terminal condition is given by (3.43):

tcha,shdl := True. (3.43)

Based on the reports from da-class agents and schedule parameters, the transition func-
tion chooses a candidate agent to be set as executing. If no agent is selected, the current
executing agent will continue its task.

5. ScmdDA
ha – the agent reads the value of the ccha[irrDA] field and sets the values of the

ybsha,rAda [cmd] buffers to either suspend, start, or terminate agents from the set rAda. The
basic behaviour executed in this state consists of a transition function given by (3.44):

[
ybsha,rAda [cmd], ccha[exeDA], ccha[irrDA], ccha[idleDA]

]
:=

:= f cmdDA
ha

(
ccha[irrDA], ccha[exeDA]

)
, (3.44)

and the behaviour’s terminal condition is: tcha,cmdDA := True. The transition function
based on the identifiers of the candidate, and the executing agents sends commands to
these agents to switch their modes of operation (defined in their FSMs). An example
algorithm of (3.44) is presented in Alg. 1.

3.4 The Executor, Cloud and Task Requester Agent classes

Whereas da-class agents are client-like entities that are responsible for the execution of the tasks
that are implemented in them, agents of exa and cla classes are server-like entities that da-class
agents call to complete their tasks.

An exa-class agent commands the robot’s hardware. According to (3.7), the example agent
of this type is raex. It has:

58

“rozprawa” — 2021/5/11 — 15:22 — page 59 — #59

Algorithm 1: Algorithm of f cmdDA
ha .

Result: Suspension of the task of raexeDA and start/resumption of the rairrDA task
1 //check if raexeDA executes its task
2 if T

xcha,exeDA[report] == [exeTsk, scheduleParams] then
3 T

ycha,exeDA[cmd] = [susp, data];
4 //check if raexeDA has suspended its task
5 else if T

xcha,exeDA[report] == [wait, scheduleParams] then
6 Dr = Dr ∪ {ccha[exeDA]};
7 ccha[exeDA] = {};
8 //check if there is no agent assigned to raexeDA and there is rairrDA
9 if ccha[exeDA] == {} ∧ ccha[irrDA] ̸= {} then
10 ccha[exeDA] = ccha[irrDA];
11 ccha[irrDA] = {};
12 T

ycha,exeDA[cmd] = [start, data];
13 end
14 //check if a buffer of xbsha,rAda [report] consists of 'end' flag and if so, remove

the appropriate agent from rAda
15 if ∃Txcha,dy[report] ∈ xbsha,rAda [report] :

T
xcha,dy[report] == {end} then

16 rAda = rAda\rady;
17 end

• T
ycex,dy[rob], Tycex,rr[rob], Tycex,ha[rob] buffers to inform other agents about the robot and its
environment states,

• T
xcex,exeDA[rob] buffer to configure the robot hardware and command the robot’s effectors.

A cla class (for this description racl is an example) awaits requests from the da class that
is associated with it (according to (3.9), racl supports rady), calculates the response and stores it
in its buffer (in the example namely T

yccl,dy[cloud]). Implementation of cla-class agents and the
support they supply differ among tasks and systems; hence, the structures of cla class buffers
may differ as well. Symbolic planning is one of the example services that can be provided by
cla class to da class.

Agents of tra class are entities that can request new tasks. There may be many tra-class
agents in the system, which differ in structure. Some may be only computational agents (CT)
with a control subsystem only and request new tasks, e.g. based on a timer. Agents of tra class
may also be equipped with a physical device or a sensor that initiates a task request. As there
may be many robots in the system, agents of sAtra (satr is an example) must obtain a list of the
robots and their addresses from the pla class (sapl is an example) by the active-robots interface
(Tyctr,pl[active-robots] and T

xctr,pl[active-robots] are an example).
Each of the tra-class and cla-class agents has a pair of buffers to communicate with the

sapl agent to call the system-common services that are supplied by sapl. For the example agents,
the buffers are T

xctr,pl[srv], Tyctr,pl[srv] and T
xccl,pl[srv], Tyccl,pl[srv].

59

“rozprawa” — 2021/5/11 — 15:22 — page 60 — #60

3.5 The harmonisation procedure

The robot systems that utilise TaskER can harmonise their tasks and are composed of agents
that belong to the defined classes. Models of the classes are presented in the previous sections;
however, for a comprehensive description of the system behaviour, a depiction of the inter-agent
interactions is recommended. Thus, in this section workflow of the agents in a typical task
harmonisation problem is presented. The system that is considered in the scenarios consists of
one robot (R = {r}), one tha-class (rAtha = {raha}), one exa-class (rAexa = {raex}) and one
tra-class (sAtra = {satr}) agents. As the objective of this study is to describe the robot task
harmonisation model, this section focuses on the workflow of satr, raha and da-class agents, and
not the other agents. Behaviours of the other agents are described in detail in [30].

An outline of the task harmonisation procedure in a system that utilises the TaskER model
is presented as an activity diagram (Fig. 3.8). The complex activities that are illustrated in
the rounded rectangles are described in the following subsections. The interactions between the
system agents in each of the complex activities are presented in separate sequence diagrams. The
harmonisation procedure is initiated by one of the following events, as marked in the activity
diagram:

1. event 1 – raha receives a new task request from satr, therefore, the initial condition to
SinitDA
ha is satisfied,

2. event 2 – a trigger repetitively initiates Sshdl
ha (3.35),

3. event 3 – ccha[exeDA] and ccha[irrDA] are empty, but there is an idle da-class agent or
raha receives a new report with schedule parameters (3.37).

The procedure is terminated if either activity 1, activity 5, activity 6, or activity 7 is completed.
The procedure consists of two decision nodes: D1 and D2. The former checks the output of
f shdlha and is implemented as the initial condition to ScmdDA

ha . The latter decision node, namely,
D2, is checked in the conditions of Alg. 1.

3.5.1 Activity 1 – launch a new Dynamic Agent

The interaction between agents in this activity is presented in Fig. 3.9. satr sends a request to raha
via T

yctr,ha[task] that is connected to T
xcha,tr[task]. Consequently, SinitDA

ha is triggered (3.34) and
manages initialisation of a new Dynamic Agent, starts the program that implements the da class
model, passes initial data to it and extends ccha[idleDA] with the identifier of the new dynamic
agent (e.g., d1). Thus, rad1 is created, and FSMd1 switches to Sinit

d1 , where the system-specific ini-
tialisation actions are conducted (SinitComm

d1). Finally, rad1 switches to ScompSP
d1 , in which it repet-

itively calculates its schedule parameters (given by (3.21)) and saves them in T
ycd1,ha[report].

60

“rozprawa” — 2021/5/11 — 15:22 — page 61 — #61

activity 1:
launch a new

dynamic agent

 activity 4:
 evaluate the schedule

parameters by
activity 5:

continue the ongoing task

activity 7:
switch the tasks

activity 2:
event 1 event 2

activity 6:
start the task of

D1

D2

event 3

evaluate

evaluate
activity 3:

Figure 3.8: The task harmonisation procedure in the TaskER model.

Figure 3.9: The sequence diagram of a new task request management and a da-class agent
initialisation.

3.5.2 Activity 6 – start the task of rairrDA

In this case, none of the agents in rAda plays the role of raha,exeDA, and f shdlha assigns the role
of rairrDA to an agent from Dr. The interaction between the agents in this activity, assuming
rairrDA = rad1, is illustrated in Fig. 3.10.

61

“rozprawa” — 2021/5/11 — 15:22 — page 62 — #62

Figure 3.10: The sequence diagram of starting a da class task.

3.5.3 Activity 7 – switch the tasks

This activity is triggered only if f shdlha assigns an agent from Dr to rairrDA and if a da-class agent
executes its task. The sequence of the agent interactions in this activity is presented in Fig. 3.11.
According to (3.36), the initial condition to ScmdDA

ha is satisfied until the identifier of rairrDA is
not removed from ccha[irrDA] in line 11 of Alg. 1. Depending on a state of raexeDA, either the
condition in line 2 or in line 5 of Alg. 1 is satisfied. In the former case, raha sends a suspension
signal to raexeDA, and in the latter, it removes raexeDA from ccha[exeDA]. As this activity is started
only if ccha[exeDA] ̸=Ø, first, f cmdDA

ha will access the condition in line 2 and send the suspension
signal to raexeDA (Tycha,exeDA[cmd]=[susp,data]). Henceforth, two cases are considered:

1. If the ongoing stage is suspendable (Sstage,k
exeDA∈UexeDA), then FSMexeDA,exeTsk is termi-

nated (as presented in Fig. 3.4c), and raexeDA is switched to FSMexeDA,susp. Subsequently,
the agent prepares a plan for the task suspension (SgenSusp

exeDA) and executes the plan in
FSMexeDA,exeSusp. Finally, when the task is suspended, the agent switches to Swait

exeDA and
saves the report message to T

ycexeDA,ha[report] that contains the name of the current state
– wait. While raexeDA follows the above sequence, the algorithm of f cmdDA

ha always enters
the condition in line 2 of Alg. 1. When raexeDA enters the Swait

exeDA state, the condition in
line 5 is satisfied, and f cmdDA

ha moves the identifier of raexeDA from the ccha[exeDA] field
to the Dr set. Next, the algorithm enters the condition in line 9 as the ccha[exeDA] field
is empty. Consequently, f cmdDA

ha moves the identifier of rairrDA from ccha[irrDA] to the
ccha[exeDA] field and sends the start signal to rairrDA.

62

“rozprawa” — 2021/5/11 — 15:22 — page 63 — #63

Figure 3.11: The sequence diagram that presents cooperation of the system agents while switch-
ing rairrDA and raexeDA agents (activity 7), where Sstage,k

d1 ∈FSMd1,exeTsk, rad1 is initially raexeDA and
rad2 becomes rairrDA as a result of the f shdlha execution.

63

“rozprawa” — 2021/5/11 — 15:22 — page 64 — #64

2. If the ongoing stage is blocking (Sstage,k
exeDA∈LexeDA), then the suspension signal

(TxcexeDA,ha[cmd]=[susp,data]) is ignored; hence, this stage and all subsequent blocking
stages will be completed without interruption. The signal is ignored because the terminal
condition of a blocking stage behaviour is given by (3.25). When FSMexeDA,exeTsk finally
enters a suspendable stage, the activity will follow the sequence that is described in the
first case.

3.5.4 Configuration method of the TaskER model

In the Model-Driven Engineering approach, models are parametrised, and as the result of their
parameters configuration, the model becomes a system adjusted to a specific problem. The
requirements for the resulting system declare the goal of the configuration. In the previous
sections, the TaskER model is introduced with a set of configuration parameters. In this section,
a procedure to configure the model is presented, and the effect of the parameters adjustment is
shown.

Expression of a specific system’s requirements in the model’s formalism

There are several system-wide parameters to be set to configure the TaskER model. However,
first, the system requirements need to be defined. Based on them, the following steps are needed:

1. specification of the task request interfaces and the robots composing the system need to
be reflected in the sets defined in TaskER (3.6)-(3.8) and names of the agents need to be
set,

2. determination of the task harmonisation type (interruptible-task or constant-task),

3. selection of schedule parameters and a scheduling algorithm,

4. classification of the schedule parameters into task-context dependent, which needs to be
calculated by da-class agents and system-context dependent, which tha class agent can
compute,

5. based on the above analysis, the structure of T
ycdy,ha[report] is to be defined (3.15)-(3.16)

and if any task-context schedule parameters are used, complete definition of the
scheduleParams structure is required,

6. each task-context dependent schedule parameter requires individual primitive transition
function composed in pf compSP

dy (3.21), so the functions are to be defined,

64

“rozprawa” — 2021/5/11 — 15:22 — page 65 — #65

7. the scheduling algorithm (for raha designated as f shdlha) of each tha class agent is to be
specified.

Configuration of the Dynamic Agent model

Robots in the system can execute only the tasks that are stored in sast. The tasks need to be
defined by the configuration of the model describing da-class agents. Therefore, for each type
of the tasks, the following configuration procedure of the model is required (assuming rady as an
example agent):

1. The task automata definition – a static FSMdy,exeTsk or a function to generate one in
pfupTsk

dy is to be specified,

2. The task stages classification – each stage of the automata needs to be classified either
as blocking or suspendable,

3. The task stages specification – transition functions, error and terminal conditions for the
stages need to be defined,

4. The task update specification – a function to update the task automata can be defined,
if not, the task while resumed executes a static automaton,

5. The task suspension specification – a transition function of SgenSusp
dy is to be defined.

It can involve a planning method or be a simple decision algorithm selecting basic be-
haviours to be assigned to SexeSusp

dy ,

6. The schedule parameters calculation – pf compSP
dy needs to be defined, including func-

tions calculating task-dependent schedule parameters.

65

“rozprawa” — 2021/5/11 — 15:22 — page 66 — #66

66

“rozprawa” — 2021/5/11 — 15:22 — page 67 — #67

Chapter 4

Verification – implementation,
specification and execution of the example
systems

The model specified in the previous chapter is implemented as a framework to facilitate utilisa-
tion of this study results and to test it in the verification systems. The first system controls the
TIAGo mobile robot [59], shown in Fig. 4.1a. The second system controls the Velma mobile
manipulator [60], shown in Fig. 4.1b. Each of the robots operates in the Gazebo simulator and
executes the tasks specified in the verification systems’ requirements. Additionally, the TIAGo
system is integrated with the real robot and launched. In this study case, verification in a sim-
ulated world is adequate because the work abstracts from the parts of the robot controllers that
differ between the simulated and the real version of the controllers.

4.1 Implementation of the TaskER model

The TaskER framework delivers two Python classes, namely, TaskHarmoniser and
DynamicAgent, which implement the tha and da classes, respectively. Implementation of the
framework and the agents that are specific to example systems (raex, sapla, satr, and sast), is based
on the ROS framework.

Agents raha and satr are implemented as separate ROS nodes and are launched upon the system
startup. raex is robot-specific and is implemented with ROS nodes that serve common robot
actions (e.g., navigation and manipulation).

Upon TaskHarmoniser class initialisation, a ROS node is launched. The node exposes
a ROS service interface (implementing f initDA

ha) to request new tasks and implements a sub-

67

“rozprawa” — 2021/5/11 — 15:22 — page 68 — #68

(a) The TIAGo robot used in the example
system launched in simulation and reality.

(b) The Velma robot used in the example
mobile manipulation system.

scriber for ROS topic messages. The subscriber receives reports from rAda agents. The interface
of a tha-class agent for requesting tasks (Txcha,tr[task] and T

ycha,tr[task] buffers) is implemented
as a ROS service. Upon each task request, raha launches a new ROS node that implements
a suitable da-class agent. Henceforth, the node of the da class will publish its report messages
to the ROS topic that the tha-class agent subscribes. In addition to the above interfaces, the
TaskHarmoniser class implements example transition functions namely, f cmdDA

ha and f shdlha , re-
spectively, as presented in this dissertation (Alg. 1 and Alg. 2).

A dedicated script is implemented with the DynamicAgent Python class for each type of
tasks in the system. The task scripts are started by a tha-class agent upon request from a tra-
class agent. Upon initialisation of the DynamicAgent Python class, considering dy as an iden-
tifier of the da-class agent that is being initialised:

1. a ROS node is launched;

2. a ROS service of pla class is requested to launch a ROS node of racl ∈ rAcla (if rady requires
support from a cla-class agent);

3. interfaces of rady are created:

(a) T
xcdy,ha[cmd] as a ROS topic subscriber, which sets the initial conditions icdy,start,
icdy,susp, and icdy,term;

(b) T
ycdy,ha[report] as a ROS topic publisher (which is connected to T

xcha,dy[report]),

68

“rozprawa” — 2021/5/11 — 15:22 — page 69 — #69

(c) T
xcdy,ha[reqSP] and T

ycdy,ha[reqSP] as a ROS service (which are connected to
T
ycha,dy[reqSP] and T

xcha,dy[reqSP], respectively);

(d) T
xcdy,ex[rob] and T

ycdy,ex[rob] by the robot API class initialisation; and

(e) T
xcdy,cl[cloud] and T

ycdy,cl[cloud] as a ROS service client that is connected to the ROS
service that is shared by racl supporting rady.

The above initialisations are managed in the SinitComm
dy state. Next, rady follows FSMdy and the

basic behaviours that are described in Section 3.2.3.

4.2 The system with simple tasks and complex schedule pa-
rameters – the TIAGo robot example

4.2.1 Expression of the system’s constraints in the model’s formalism

This verification system is configured to harmonise simple tasks; however, the parameters used
to decide which task should be executed are complex. This system was launched in two TIAGo
robot embodiments— simulated and real. The configuration of the system is as follows:

1. task harmonisation is of interruptible-task type,

2. there is one robot in the system (R = {r}), one tha-class agent (RAtha = {raha}) and one
exa class (RAca = {raex}),

3. there is one tra-class agent—satr,

4. agents of rAda provide task-dependent schedule parameters that are defined by the follow-
ing structure:

scheduleParams = [tType, cost, cps, cT ime, endPose]. (4.1)

The field tType consists of an identifier of the task type that the da class manages. In this
verification, sast provides two types of tasks (4.2).

tType ∈ {guideHuman, humanFell}. (4.2)

The guideHuman task objective is to approach a specified human, introduce the task,
guide him to a specified location and say goodbye. In contrast, the humanFell task is an
emergency call for a robot to approach a specified human (who likely fell) and check his

69

“rozprawa” — 2021/5/11 — 15:22 — page 70 — #70

consciousness. The symbol tTypedy denotes a type of the task that is conducted by rady.
Agents of rAda belong to set Gr if they initialise their report buffers (Tycdy,ha[report]̸=Ø for
rady) with the first report (by pf compSP

dy for rady) and manage a task of guideHuman type.
Agents that initialise their report buffers and their tasks are of humanFell type belong to
the set Fr.

e = rady ∈ rAda ∧ T
ycdy,ha[report] ̸= Ø,

rady ∈ Fr : e ∧ tTypedy = humanFell, (4.3)
rady ∈ Gr : e ∧ tTypedy = guideHuman. (4.4)

The parameter costdy is a task-dependent schedule parameter of rady that depends on the
current state of the robot and its environment:

(a) For Gr agents, it represents the comfort of a person cooperating with the robot dur-
ing the task. The value of the cost parameter changes with time and is calculated
following the equation:

cost =
wstand

tstand
+

wsit

tsit
, (4.5)

where:

i. tstand is an estimated time for which the guided person stands. It is measured
starting from the receipt of the task request until the task objective is completed;

ii. wstand is a scaling factor for standing posture that is parametrised according to
the person’s health condition;

iii. tsit is an estimated time for which the guided person sits. It is measured starting
from the receipt of the task request until the task objective is completed; and

iv. wsit is a scaling factor for sitting posture that is parametrised according to the
person’s health condition.

(b) For Fr agents, the cost parameter represents the distance to the human that fell in
consideration of the robot’s current pose.

The greater the value of the costdy parameter, the less urgent the task of rady is. cps is an
estimate of the first derivative of the task cost, considering the current state of the robot
and its environment. cT ime is an estimate of the task duration if it was started at the
estimation time (considering the robot’s current state and its environment). endPose is
the pose of the robot when the task is completed.

70

“rozprawa” — 2021/5/11 — 15:22 — page 71 — #71

5. raha schedules rAda agents (using f shdlha) based on algorithm 2. Hence, tasks of the same type
compete with one another based on the cost parameter and the hypothetical parameters
that are requested by f shdlha (via bsha,rAda [reqSP] buffers). The algorithm always causes
an interruption of a guideHuman task by a humanFell task. In line 22, the algorithm
requests two hypothetical parameters: cc and ccps. The former is an estimated cost of the
recipient’s task completion if the task would be started from a specified pose. The ccps
parameter is the cost per second while the recipient’s task awaits start.

4.2.2 Configuration of the Dynamic Agent model for the task types

Configuration of the guideHuman type tasks The model of the da class (section 3.2) must
be configured for a specified task type to satisfy constraints of the task. The configuration
procedure is presented for the example da class—ragh∈rAda managing a task of guideHuman
type:

• The task automata specification – FSMgh,exeTsk is illustrated in Fig. 4.2,

• The task stages classification –most of the stages are suspendable, but Sstage,4
gh is blocking

as it is the final stage finishing the task,

• The task stages specification – the basic behaviours executed in the task stages are de-
scribed in the caption of Fig. 4.2,

• The task update specification – fupTsk
gh is defined in Alg. 3,

• The task suspension specification – is given by the following formula:

f genSuspgh =

BexeSusp
gh = Bsave

gh , if ¬greeted

BexeSusp
gh = Bapologize

gh , if greeted
, (4.6)

where greeted is True if the robot already greeted the person being guided and False if
did not. In the first case of (4.6), the basic behaviour of SexeSusp

gh consists of the function
f savegh . It saves already computed results, which are useful after the task resumption (e.g.,
the person’s pose can be used as an initial value for the person search algorithm after the
task resumption). The terminal condition of Bsave

gh is always satisfied (tcgh,save=True);
hence, after one iteration ofBexeSusp

gh , the transition to Swait
gh is triggered. In the second case,

Bapologise
gh is assigned to SexeSusp

gh . This basic behaviour stops the robot, saves important
data (as in the Bsave

gh case), and asks the person to stay and not follow the robot because it
received another important task.

71

“rozprawa” — 2021/5/11 — 15:22 — page 72 — #72

Algorithm 2: The algorithm of an example f shdlha that is implemented in TIAGo veri-
fication system.
Input:

{
xbsha,rAda [report], bsha,rAda [reqSP], Gr, Fr,

ccha
}

Result:
{
ccha[irrDA]

}
1 dac = Ø;
2 //get the agents' identifiers from Fr and Gr sets that have the lowest costs
3 cHF = argmin

dy:rady∈Fr

costdy ;

4 cGH = argmin
dy:rady∈Gr

costdy;

5 if cHF == Ø ∧ cGH == Ø then
6 return;
7 end
8 else if ccha[irrDA] == Ø then
9 if cHF ̸= Ø then
10 if raexeDA ̸∈ Fr then
11 ccha[irrDA] = {cHF} ;
12 return;
13 end
14 //set the identifier of the candidate for the task switch
15 dac = cHF;
16 end
17 else if cGH ̸=Ø ∧ raexeDA ̸∈ Fr then
18 dac = cGH;
19 end
20 if dac ̸=Ø then
21 //request the candidate for hypothetical schedule parameters, where 1 is the identifier

of the primitive transition function of f compSP
dac

22 T
ycha,dac[reqSP] = {1, endPoseexeDA};

23 {ccdac, ccpsdac} = T
xcha,dac[reqSP];

24 //request of the estimated cost of ccha[exeDA] task suspendion and completion after
resumption of the raexeDA task (ccexeDA) and cost per second while waiting for resumption
(ccpsexeDA)

25 T
ycha,exeDA[reqSP] = {1, endPosedac};

26 {ccexeDA, ccpsexeDA} = T
xcha,exeDA[reqSP];

27 cswitch=costdac + ccexeDA + cpsexeDA ∗ cT imedac;
28 cwait=costexeDA + ccdac + cpsdac ∗ cT imeexeDA;
29 if cswitch < 0.9 · cwait then
30 ccha[irrDA] = {dac}
31 end
32 end
33 end

• The schedule parameters calculation – pf compSP
gh is given by the following formula:

f compSP
gh =

pf reportgh , if timer(ccgh[stsRate])

pf sp,1gh , if I1
, (4.7)

I1 = newData(Txcgh,ha[reqSP]), (4.8)

pf sp,1gh :
{
T
xcgh,ha[reqSP], Txcgh,ex[rob],

ccgh
}
→

{
ccgh, ccpsgh

}
. (4.9)

72

“rozprawa” — 2021/5/11 — 15:22 — page 73 — #73

Algorithm 3: The algorithm of fupTsk
gh , where greeted is True if the task was suspended

after greeting the human and False if it was not suspended.
Input: FSMgh,exeTsk

Result: Modification of FSMgh,exeTsk

1 if greeted == True then
2 Bs,2

gh = Bgreet_and_apologise
gh ;

3 else
4 Bs,2

gh = Bgreet
gh ;

5 end

entry

exit

v

v

v

Figure 4.2: The FSM of human guidance tasks, where the basic behaviour of Sstage,1
dy moves

the robot to the requested human, the basic behaviour of Sstage,2
dy interacts with the human to

introduce the task and ask him to follow the robot, the basic behaviour of Sstage,3
dy moves the

robot to the destination and checks if the human follows the robot. The basic behaviour of
Sstage,4
dy finishes the interaction with the human.

Configuration of humanFell type tasks The constraints for a humanFell type task is as fol-
lows (considering rahf as an example):

• The task automata definition – FSMhf,exeTsk is given by the graph shown in Fig. 4.3,

• The task stages classification – Sstage,move
hf is suspendable and Sstage,report

hf is blocking,

• The task stages specification – the basic behaviours executed in the task stages are de-
scribed in Fig. 4.3,

• The task update definition – the task automata (Fig. 4.3) is not required to be updated
in this simple example,

73

“rozprawa” — 2021/5/11 — 15:22 — page 74 — #74

entry

exit

Figure 4.3: The graph describing FSMhf,exeTsk of a humanFell type task.

• The task suspension specification – as there is just one suspendable stage (Sstage,move
hf),

so there is just one suspending behaviour, namely Bstop
hf that is assigned by f genSusphf to

BexeSusp
hf . The robot is stopped if this basic behaviour is executed.

• The schedule parameters calculation – pf compSP
hf is given by the following formula:

f compSP
hf =

pf reporthf , if timer(cchf [stsRate])

pf sp,1hf , if I1
, (4.10)

I1 = newData(Txchf,ha[reqSP]), (4.11)

pf sp,1hf :
{
T
xchf,ha[reqSP], Txchf,ex[rob],

cchf
}
→

{
cchf , ccpshf

}
. (4.12)

4.2.3 Execution of the example system

The system was executed in the example scenario in simulation and the task harmonisation
procedure (Sec. 3.5) was executed over 80 times in a changing environment. The scenario
involved:

1. requests of da-class agents that manage tasks of various types,

2. calculation of dynamic schedule parameters while the robot moves and conducts various
tasks,

3. selection and execution of task suspension strategies. Additionally, task plans are updated
before execution.

4. a task switch due to either a request for a higher priority task or a change in the environ-
mental setup (human movement), and

5. termination of an agent from set Dr if its task is no longer beneficial.

74

“rozprawa” — 2021/5/11 — 15:22 — page 75 — #75

John

Alice

John's
destination

destination

of Peter fell

destination

of Sara fell
robot's initial

pose

Alice's

destination

Figure 4.4: Verification environment setup.

The initial setup of the environment is shown in Fig. 4.4. Four people, namely, John, Alice,
Peter and Sara, were in the environment. In the following paragraph, a period of the tests is
described in detail. In this period, four tasks were requested:

1. guide John – a guideHuman-type task that was managed by rad1,

2. guide Alice – a guideHuman-type task that was managed by rad2,

3. Peter fell – a humanFell-type task that was managed by rad3,

4. Sara fell – a humanFell-type task that was managed by rad4.

The robot and human actions during the scenario’s period are shown in the sequence diagram
(Fig. 4.5). There are actions of TIAGo, actions of the moving human (John) and primary states
executed by Dynamic Agents visualised over time. In Fig. 4.4 there are initial poses of the
robot (as a pentagon), John (as a filled circle) and Alice (as an empty circle) visualised. The
path that John traversed while waiting for the robot is represented as a dotted line. Filled and
empty stars represent John’s and Alice’s destinations. The poses in which Sara and Peter fell are
represented as dotted and dashed circles. The verification scenario was recorded, and the video
is available [71].

In Fig. 4.6, the values of the following schedule parameters calculated by f shdlha are plot-
ted: costdac, costexeDA, ccdac, ccexeDA, ccpsdac, ccpsexeDA, cswitch, and cwait. The rectangu-
larly highlighted sections of the figure show values of the fields ccha[idleDA], ccha[exeDA] and
ccha[irrDA] in crucial moments of the test period. First, at time = 2450, rad1 is initialised and
executes its task. Then, between time = 2450 and time = 2509, rad2 is initialised, which com-
putes the schedule parameters, and eventually, at time = 2509, f shdlha sets dac = d2 (line 18 of
the Alg. 2). After comparing cswitch and cwait (line 28 of the Alg. 2), it assigns the identifier

75

“rozprawa” — 2021/5/11 — 15:22 — page 76 — #76

FINISHED

TIAGo

moves to John

moves to Alice

moves to John

guides John

apologises to John

moves to Peter

moves to Sara

checks Sara's

condition

moves to John and

apologises for the delay

finishes guide John task

moves to Alice and

completes guide

Alice task

John

moves
to his

destination

follows the robot

waits
for the
robot

waits
for the
robot

waits
for the
robot

follows the robot

time

2450

2509

2513

2527

2540

2570

2593

2595

2602

2634

2519

FINISHED

FINISHED

FINISHED

The dynamic

agent switches

Figure 4.5: The sequence of TIAGo and John actions in the scenario with timestamps. There
are Dynamic Agent switches and the states executed by the agents during the verification.

of rad2 to ccha[irrDA]. In response to this, ScmdDA
ha is triggered and sends a suspension signal

to rad1, which is in Sstage,1
d1 (the robot approaches John). The agent switches to the SgenSusp

d1 state
(which, following (4.6), assigns Bsave

d1 to BexeSusp
d1) and subsequently to SexeSusp

d1 and Swait
d1 . As

rad1 notifies raha that the suspension strategy (FSMd1,exeSusp) has been completed, f cmdDA
ha sends

a start signal to rad2. Finally, at time = 2513, ccha[exeDA] = d2 and ccha[idleDA] = Dr = {d1}.
From time = 2513 to time = 2519, John moves closer to his destination; hence, the cost

(costd1 = costdac) decreases. At time = 2519, the cost of the task switch, namely, cswitch, is
less than the opposite cost of not switching, namely, cwait. This is because cswitch is a sum of
the following costs:

• suspension of the task of rad2,

• completion of the task of rad1 (approaching John and guiding John to his destination),

• completion of the task of rad2 starting from the John’s destination pose,

and cwait is the sum of the following costs:

• completion the ongoing task of rad2,

• completion of the task of rad1 starting from the Alice’s destination pose.

76

“rozprawa” — 2021/5/11 — 15:22 — page 77 — #77

(a) The first part of the verification period.

(b) The second part of the verification period.

Figure 4.6: Data that were calculated by f shdlha during the verification.

77

“rozprawa” — 2021/5/11 — 15:22 — page 78 — #78

Therefore, in response to the change in the environment (John’s movement), the former is less
than the latter. Until time = 2527, rad2 suspends its task; finally, at this time, rad1 can resume
its task. rad1 completes stages Sstage,1

d1 and Sstage,2
d1 .

At time = 2540, while rad1 was in Sstage,3
d1 (guiding John to his destination), the robot re-

ceived a request for the Peter fell task. As a result of this, rad3 is initialised, and as the Peter fell
task is of humanFell type (rad3 ∈ Fr) and the guide John task is of guideHuman type (rad1 ∈ Gr),
the condition in line 10 of the Alg. 2 is satisfied, and rad3 is immediately assigned to ccha[irrDA].
At this point, rad1 switches to SgenSusp

d1 , which, according to (4.6), assigns Bapologise
d1 to BexeSusp

d1 .
Then, rad1 switches to SexeSusp

d1 , and the robot apologises to John, asks him to stop following
the robot and stores his current pose. Finally, rad1 switches to Swait

d1 , and f cmdDA
ha sends the start

signal to rad3 at time = 2570.

Next, while the robot is moving to the Peter fell destination (the dashed circle in Fig. 4.4), it
receives a request for the Sara fell task (whose position is marked with a dotted circle). Compar-
ison of cswitch and cwait at time = 2593 resulted in a task switch; hence, rad3, following FSMd3,
switches to the Swait

d3 state, and the robot starts the Sara fell task.

Next, at time = 2602, rad3 is in Swait
d3 and calculates fwait

d3 (in this case pf reportd3). It receives
information that Peter is fine and there is no need to check his health status. Consequently, fwait

d3

sends a report to raha based on (3.16):

T
ycd3,ha[report] = [end, scheduleParams]. (4.13)

As a result, termevent is triggered (3.36) and f cmdDA
ha removes rad3 from the rAda set. During the

verification, there was no candidate for ccha[irrDA] in the following periods:

• between the initialisation of rad1 (time = 2450) and rad2 (time = 2509),

• between time = 2523 and time = 2527 (the following line 8 of Alg. 2),

• between time = 2570 and time = 2593 and between time = 2602 and time = 2634.

Therefore, in these periods dac variable of Alg. 2 is: dac = ∅, and no values of the considered
parameters were calculated by f shdlha .

Additionally, the example system was integrated with the real TIAGo robot, and a sce-
nario similar to the presented one was played with cooperation with humans. The video
showing the experiment is available in [72].

78

“rozprawa” — 2021/5/11 — 15:22 — page 79 — #79

4.2.4 Satisfaction of the requirements in the example system

In the example system, satr can request multiple tasks at any time. The requests are processed,
suitable da-class agents are created, and in each iteration of f shdlha , a da class can be assigned to
rairrDA; thus, the requirement R11 is satisfied.

Schedule parameters can be computed repetitively (3.21) by pf reportdy , which fills the
T
ycdy,ha[report] buffer (3.16). Additionally, the scheduling algorithm can request hypothetical
schedule parameters, which are computed by dedicated primitive transition functions of f compSP

dy ;
thus, the requirement R22 is satisfied.

The procedure of scheduling da-class agents is divided into multiple primitive transition
functions, which are distributed among da-class agents and raha. The latter with the f shdlha func-
tion computes the decision on switching an ongoing task with a new task or continuing the
current task. Therefore, the example system can be easily configured to use different schedule
parameters and scheduling algorithms. Thus, the requirement R33 is satisfied.

Tasks are created independently and stored in the cloud. A tha class agent of a robot down-
loads them upon its user’s request. The initiated tasks become da-class agents and compute
the schedule parameters considering the expert knowledge and the task’s context. For example,
expert knowledge can be used to calculate an estimated time for completing a task (e.g., a speed
limitation can be set due to transportation of a delicate object or liquid). Thus, the requirement
R44 is satisfied.

The TaskER model divides tasks into stages that can be suspended and stages that cannot. It
also defines the FSMof da class with dedicated states triggered if the agent receives a suspension
signal and the current stage of the agent’s task is suspendable. Hence, the agent, executing its
task, manages the actions in case of an interruption. Therefore, it prevents possible inconvenient
behaviour or damage to the system and its environment. The executing agent is chosen to execute
the suspending actions because it possesses expert knowledge regarding the current task and its
progress. For example, suppose the robot in the verification scenario did not warn John that the
robot switched tasks. In such a case, John would follow the robot unnecessarily. Hence, the
suspension state avoided the inconvenient walk for John while the robot conducted other tasks.
Another example of a suspension action is turning off a cooker if it was turned on during the

1The robot controller maintains additional activities to enable an advised task switch. It constantly listens to
task requests and executes a schedule decision and switches tasks, even if the robot executes another task.

2Values of the schedule parameters (e.g., priorities) used to compute schedule decisions are dynamically chang-
ing even if a task awaits execution. If one of the parameters changes, then the scheduling algorithm is initiated. All
classes of the schedule parameters shown in Fig. 2.2 can be used in the system.

3Both the algorithm and the parameters that are used in the scheduling procedure depend on a system application
and must be configured based on individual system’s requirements.

4The tasks that are available in the system are created independently and differ in terms of knowledge base and
contexts.

79

“rozprawa” — 2021/5/11 — 15:22 — page 80 — #80

task’s execution. Another example is to exit a secret room that access code is known only to
the current task. Hence, the requirement R55 As a result of this, a possible robot/environment
damage or other loss due to the task interruption is limited. is satisfied.

Due to the frequently triggered pf reportdy function, rady can react to changes in a dynamic
environment and update values of the schedule parameters. The changes in the environment
also affect the plans of da-class agents. Therefore, the TaskER model foresees the need to
update the plans (in the state SupTsk

dy) before an agent executes its task. The most straightforward
example result of BupTsk

dy can be an extension or reduction of a plan due to actions carried out
by a user in the environment. Thus, the requirement R66 is satisfied.

4.3 The system with a complex task and simple schedule pa-
rameters – the mobile manipulator example

4.3.1 Expression of the system’s constraints in the model’s formalism

Verification in a mobile manipulation system is conducted by applying the TaskERmodel and its
harmonisation procedure (Fig. 3.8) in a simulated environment inhabited by theVelma robot [61].
The configuration of the system is as follows.

1. task harmonisation is of interruptible-task type,

2. there is one robot in the system (R = {v}), one tha-class agent (RAth = {vaha}) and one
exa class (RAca = {vaex}),

3. there is one tra-class agent—satr,

4. agents composing vAda do not provide any schedule parameters to vaha,

5. sast provides two task types: bringObject and humanFell. Agents managing tasks of
bringObject type compose the set sAbo and these managing tasks of humanFell type com-
pose the set sAhf ,

6. the scheduling algorithm managing tasks in this system is given by the following rules:

5The developed model must raise awareness of the task developer to foresee possible dangerous situations
caused by a task switch. Additionally, the proposed task execution method enables independent tasks to over-
see changes in the environment and set various schedule parameters. Furthermore, the ongoing task is carefully
suspended before the controller switches to another task.

6A plan of a task that awaits execution is updated before the task execution.

80

“rozprawa” — 2021/5/11 — 15:22 — page 81 — #81

(a) agents managing tasks of the same type are stored in separate queues following First
In First Out paradigm,

(b) the queue aggregating the agents from the sAhf set is preferred over the other queue,
so the algorithm favours agents from the sAhf set,

(c) if vaexeDA ∈ sAbo and sAhf ̸=Ø, then the first agent from the queue of sAhf agents is set
as vairrDA,

(d) tasks of the same type do not interrupt each other.

4.3.2 Configuration of the Dynamic Agent model for the task types

The model of da class (Sec. 3.2) must be configured for a specified task type to satisfy its
constraints. Configuration of the tasks of bringObject type is as follows (considering vabo as an
example):

• The task automata definition – FSMbo,exeTsk is given by the graph shown in Fig. 4.7,

• The task stages classification – most of the stages of bringObject type tasks are sus-
pendable, but Sstage,5

bo and Sstage,6
bo are blocking. It means that the robot should finish these

stages before a suspension strategy can be executed, and the task can be switched with
the interrupting task,

• The task stages specification – the basic behaviours executed in the task stages are de-
scribed in Fig. 4.7,

• The task update definition – the task automata (Fig. 4.7) is not required to be updated in
this simple example. Only the parameters used in the task behaviours change (e.g. pose
of the object to be transported),

• The task suspension specification – there are two alternative behaviours, which can be
assigned by f genSuspbo to BexeSusp

bo and they are as follows:

– Bstop
bo – stop the mobile base and take a safe posture,

– BsetAside
bo – set aside the object being transported,

They are chosen following (4.14):

f genSuspbo =

BexeSusp
bo = Bstop

bo , if ¬grabbed

BexeSusp
bo = BsetAside

bo , if grabbed
, (4.14)

where grabbed is True if the robot already caught the object.

81

“rozprawa” — 2021/5/11 — 15:22 — page 82 — #82

entry

exit

Figure 4.7: The graph describing FSMbo,exeTsk of vabo managing a bringObject type task.

• The schedule parameters calculation – in this system Dynamic Agents do not compute
schedule parameters, so the status buffer (Tycbo,ha[report]) has the basic structure given
by (3.15) and pf compSP

bo (3.21) consists only pf reportbo , which calculates the content of the
report buffer (parameter p of (3.21) equals 0).

Configuration of the tasks of humanFell type is as follows (considering vahf as an example):

• The task automata definition – FSMhf,exeTsk is given by the graph shown in Fig. 4.3,

• The task stages classification – Sstage,move
hf is suspendable and Sstage,report

hf is blocking,

• The task stages specification – the behaviours executed in the task stages are described
in Fig. 4.3,

• The task update definition – the task automata (Fig. 4.3) is not required to be updated
in this simple example,

• The task suspension specification –there is one suspendable stage (Sstage,move
hf) and one

suspending basic behaviour—Bstop
hf . The basic behaviour simply stops the robot.

• The schedule parameters calculation – in this system Dynamic Agents do not compute
schedule parameters, so the status buffer (Tychf,ha[report]) has the basic structure given
by (3.15) and pf compSP

hf (3.21) consists only pf reporthf , which calculates the content of the
report buffer (parameter p of pf compSP

hf equals 0).

4.3.3 The verification scenario of the mobile manipulation system

The mobile manipulation system’s verification environment consists of a human, a table with
shelves, an object to transport, and another table. The object is on a shelf, and the Velma robot is

82

“rozprawa” — 2021/5/11 — 15:22 — page 83 — #83

requested to transport it to the other table. The setup of the environment is visualised in Fig. 4.8.
The conducted verification covers two moments while the robot executes a bringObject task

Figure 4.8: The setup of the environment utilised in the verification system

and is requested to manage a humanFell task. The first request is received when vabo executes
Sstage,4
bo (prepares to grab) and the second during the object manipulation in Sstage,5

bo . Following
the proposed model of da-class agents, vabomanages suspension requests differently in these two
situations. The robot’s overall behaviour and the states of the Dynamic Agents in the verification
are shown in Fig. 4.9.

In the first scenario, the suspension signal received by vabo in Sstage,4
bo triggers transition from

SexeTsk
bo to Ssusp

bo . As a result of this the robot executes suspending actions. In this case the robot
takes a safe posture, as it has not caught the object yet. Next, it executes the interrupting task
(managed by vahf), and when it is finished vabo receives a start signal and continues its task.

In the second scenario, the robot receives the suspension request in Sstage,5
bo . It is different

and more complex than the previous scenario. First, the stage of the currently managed task
is blocking, so the interruption signal is managed by vabo in the next stage (Sstage,2

bo). Second,
the robot has the object in its hand; therefore, the proper suspension behaviour is chosen in
SgenSusp
bo and executed in SexeSusp

bo . In this case, the behaviour sets aside the object to free the
robot’s effector. Finally, the interrupting task (managed by vahf) can be executed. As soon as it
is completed, vabo receives a start signal and resumes its task. Thanks to SupTsk

bo , the agent adapts
the task to the world’s current state. Therefore, the task stays feasible, even if the object’s
position changes. The above-described behaviour of the system was recorded, and the video is
available [73].

83

“rozprawa” — 2021/5/11 — 15:22 — page 84 — #84

time
FINISHED

Velma

understand

navigation

destination

prepare to grab

put down

the object

grab and take

out the object

move to the human

interview the human

and submit

the report

understand

navigation

destination

prepare to

move base

understand

navigation

destination

prepare and

move base

prepare to grab

FINISHED

stop motion

setup

update

update

prepare and

move base

prepare and

move baseswitch tasks

t1

t2

t3

(a) Interruption of a suspendable stage (pre-
pare to grab)

FINISHED

Velma

understand

navigation

destination

prepare to grab

time

grab and take

out the object

move to the human

interview the human

and submit

the report

understand

navigation

destination

prepare to

move base

understand

navigation

destination

prepare and

move base

FINISHED

set aside

the object

setup

update

update

prepare and

move base

prepare and

move base
terminal condition

satisfied before

the transition

function execution

put down

the object

grab the object

prepare to grab

prepare and

move base

t1

t1

t2

switch tasks

(b) Interruption of a blocking stage (grab and take out the
object)

Figure 4.9: The sequences of Velma actions and Dynamic Agents states during verification.

84

“rozprawa” — 2021/5/11 — 15:22 — page 85 — #85

Chapter 5

Conclusions

5.1 Discussion and related works
The conducted study regards principally three problems: robotic systems modelling, their in-
tegration with cloud support and management of their tasks. Therefore, the analysis of related
works is presented in three germane sections.

Structures and behaviour models for robot systems

One of the most popular approaches for modelling robot control systems is a layered archi-
tecture, e.g., the 3T architecture [55], [74]. It is thoroughly described, compared and used in
SmartMDSD Toolchain [75], [76]. The authors of [70] design the middle layer of the 3T archi-
tecture that is structured with a finite-state machine (FSM). It integrates a symbolic plan with
a geometric planner that instructs the robot. Each description layer of a task (symbolic planning,
behaviour sequencing, or command execution) uses a different context. Each layer fulfils objec-
tives and handles exceptions specified in a context, e.g., a symbolic planner uses logic variables
and functions, and a behaviour sequencer uses basic behaviours and transition functions.

The study described in this dissertation regards all three layers that are defined in the above
architectures. An agent of exa-class that is used in this work, is the command execution layer,
da- and tha-class agents constitute the sequencer layer. The symbolic planners (implemented
in either cla class or pla class) that the sequencer layer calls, constitute the deliberation layer.

Coordination between the layers is a complex problem, especially considering the difference
in their contexts. Stenmark et al. proposed the integration of high-level task description with
action execution [77]; however, the study focuses on the specification and execution of a spec-
ified task. The work described in this dissertation concentrates on robot tasks management by
switching independent agents of sequencer layer that can utilise high-level task description and
planning and affect the environment by instructing the agents of command execution layer.

85

“rozprawa” — 2021/5/11 — 15:22 — page 86 — #86

Distributed robot control systems Authors of the survey [78] present the current state of
robot-cloud cooperation. They distinguish four potential profits of cloud implementation in
robotic systems.

• Big data – access to large packages of images, trajectories or descriptive data,

• Cloud computing – parallel grid computing, learning, planning,

• Collective Robot Learning – sharing trajectories and outcomes in multiple robot systems,

• Human Computation – image/video analysis, classification, learning and error recovery.

Among other robot behaviours, the cloud is used in robot navigation. The work [79] presents the
C2TAM system that is used to process visual SLAM – vSLAM. In this solution, the cloud builds
the environment map using heavy computational power algorithms and processes RGB-D data
from multiple robots. In work [80], authors focus on different approaches to processing dis-
tribution among build-in robot computer and the cloud. They consider stereo pair cameras’
image processing in the mobile robot teleoperation task. They present processing and transmis-
sion time of data in different image resolution and different wireless communication cases. The
work shows that the proper distribution of processing has a crucial influence on the robot control
system’s stability and robustness. The DAvinCi [81] project developers based the cloud system
on ROS (Robot Operating System [82], [83]) communication mechanisms and the Hadoop clus-
ter [84]. It was used to process the FastSLAM (Fast Simultaneous Localization And Mapping)
– algorithm in parallel. Rapyuta platform [85] allows dynamic allocation of robot safe process-
ing environments (that are based on ROS). These environments are strictly conjugated one to
another to allow information and service exchange between robots.

Above systems, apart from using the robot computer, benefit from the second platform –
the cloud. This solution has many advantages. It supplies robot controllers with additional
computation power and storage capacity and reduces the cost of robots. Among the advantages
of cloud computing, researchers also note the reliability, large memory capacity, energy-saving,
stable power supply, better use of resources andmore straightforwardmodernization of the cloud
than the onboard robot platform.

Most of the known robot systems supported by the cloud platform are dedicated to a robot
type, an application, an algorithm, or a single service. However, the RAPP system is a dis-
tributed, modular robot system that can extend its capabilities. It allows robots to:

• store large packages of data,

• process data and conclude,

86

“rozprawa” — 2021/5/11 — 15:22 — page 87 — #87

• request computationally heavy services,

• learn objects,

• share robotic tasks even if the robots types differ,

• share data with other robots.

The cloud part of the RAPP system is based on multi-thread services; thus, it can handle mul-
tiple robots at once. Furthermore, a well-defined API of the RAPP system allows a different
type of robots to share the same tasks, and the tasks can be implemented by a non-experienced
programmer using the RAPP API. When a robot requires a specific ability, the robot downloads
a required task and interprets the RAPP API methods depending on the specific robot platform
controller implementation.

Multi-task robot systems

The authors of [86] describe a study on planning schemes for human-robot interaction. The
schemes are scheduled by a symbolic planner depending on the situation. The authors focus on
social constraints considered in the task and motion planning of a human-aware robot. However,
the problem of the suspension and resumption of the tasks is not resolved. Studies have also
been conducted on sequencing robot behaviours at the low robot-controller level (e.g., [87],
[88]). Domain switching problems arise in robotics in switching different-domain tasks and in
the execution of some tasks. For example, there are robot-human communication tasks. The
authors of [89] describe a model of a system that is capable of interruption and switching the
conversation domain.

The authors of the works [29], [90] present a method to choose the robot’s next action from
the tasks awaiting completion. The tasks based on the observations propose subsequent actions,
while the task selection algorithm chooses one of them based on the previously learned policy.
The concept of this solution is shown in Fig. 5.1. The systemmodel proposed in this dissertation
defines a dedicated state of the task in which the taskmanages its suspension. The harmonisation
procedure enables the system to calculate various schedule parameters (e.g. time to complete
tasks). Based on this knowledge, the system decides if the task switch is safe or if any actions are
required to suspend the current task. The referenced work does not consider task suspensions.
Possibly, the task suspension could be considered in the task selection learning procedure by
a negative reward generation every time the task interruption resulted in an unsafe situation.
However, the design of an appropriate set of experiments for learning prudent task management
is challenging or, in some cases, impossible. In contrast, the TaskERmodel uses a formalmethod
(HFSM) to ensure the system will consider safety while switching the robot tasks. Furthermore,

87

“rozprawa” — 2021/5/11 — 15:22 — page 88 — #88

Figure 5.1: Machine learning to choose an action from the awaiting tasks [90].

the model classifies stages of tasks as suspendable and blocking. So even the stages can be
interrupted when they are executed. In the referenced work, actions are the equivalent of the
task stages, and their execution cannot be interrupted. In an example situation where the action
is ’move to a far destination’, the action should be interruptible if the environment changes.

The SMACH library [91] is a known implementation of the robot tasks modelled with FSMs.
The TaskER, besides the task FSMs defines configurable scheduling algorithms and suspen-
sion/replanning actions. SMACH does not support replacement/modification of HFSMs na-
tively, and it is required in systems featured with planning algorithms. In this case, in one state,
a planning algorithm develops the HFSM describing the subsequent robot’s behaviour; thus, the
initial HFSM of an agent must be modified. The model of TaskER can be used for systems with
planning; therefore, in this case, the native form of SMACH can not be used.

Multiple tasks execution in state-of-the-art robot systems is realised with high-level delib-
eration. Reasoning algorithms compute a multi-objective plan that uses temporal constraints
[92] and uncertainties in hypothetical planning [93]. This approach utilises a semantic planner,
which requires a knowledge base that integrates predicates of all possible requests from the sys-
tem user and requires that the predicates be compatible among the system tasks. Therefore, the
extension of the system with additional tasks is complicated and interferes with the well-tested
tasks. Additionally, if a task’s priority changes, if a task is cancelled, or if a task’s parame-
ters change, this approach requires re-planning. The available frameworks that utilise semantic
planning ROSPlan [94], SmartTCL [76] do not provide a mechanism for re-initialising planning
in the face of modification of a task schedule parameter (like priority).

Robot systems are cyber-physical systems (CPSs). Various articles consider the task har-
monisation problem in this group [95]–[97]. However, they are focused mostly on algorithms
for optimising the task switching moment or coordination of the tasks delegated to multiple

88

“rozprawa” — 2021/5/11 — 15:22 — page 89 — #89

devices to complete a specified objective [98]. The authors of [95] present a methodology for
describing, managing and realising objectives of a device community. This study shows how
to describe an objective of device community. The authors propose to delegate simple roles
to each device. The second paper [96] presents an algorithm for minimising the deadline miss
ratio. The algorithm considers the time required by the servicing node for moving from one
place to another. However, the authors do not demonstrate how to manage a task switch. The
study [97] considers a dynamic allocation of computational tasks among distributed CPS de-
vices. The authors of [99] investigate the problem of integrating time- and event-triggered sys-
tems in a mixCPS architecture. However, they focus on computation task assignment and packet
transmission optimisation to minimise the application-level delays. The architecture considers
delays of sensor-controller and controller-actuator communications and the controller process-
ing time. In contrast to a typical CPS (where many tasks are processed rhythmically [100] or
task activation is statically defined by rules as in home automation applications), robots are be-
ing unpredictably requested for tasks. The robot user would like to change his/her requests and
preferences while the robot carries out the requested task.

Task queueing and management is an old topic in cybernetic system studies [101], [102]
and a hot topic in cyber-physical systems [103], [104]. The areas differ because the physical
environment, which CPS percept and affect, is more unpredictable. It is difficult to observe
accurately [105], [106]; therefore, it should be affected with uncertainty [107], [108] and ac-
cording to a plan [109]. The robot task harmonisation problem has similarities with process
scheduling in operating systems (e.g., sporadic scheduling in real-time systems [110]). Both
consider unit work management: in robotics, a robot executes multiple tasks, and in operat-
ing systems, a CPU manage multiple processes. The correlations between scheduling operating
system processes and harmonisation considered in the TaskER are presented in Tab. 5.1.

89

“rozprawa” — 2021/5/11 — 15:22 — page 90 — #90

Table 5.1: The comparison of scheduling in typical operating systems and robot systems that
use TaskER.

Feature OS process scheduling TaskER harmonisation
Reject mechanism Available (sporadic

scheduling)
All accepted, ability to ter-
minate unfeasible tasks

Schedule entities Processes (Threads) da-class agents
States of the schedule entities New, ready, running,

terminated, and waiting
Given by the hierarchical
FSM (Fig. 3.4)

Execution unit CPU Robot (exa-class agent)
Utilisation of a sophisticated cal-
culation of priorities and dead-
lines, which are dependent on
a job/task context

Unavailable Available

Effect of an atomic instruction The memory state
change, or an ele-
mentary action on i/o
devices

The robot configuration
or its environment state
change

Long-term scheduling entity Job scheduler tra-class agents as inter-
faces for users or external
systems

Short-term scheduling entity CPU scheduler Distributed between tha-
and da-class agents. The
latter are aware of the task
context and constraints of
the real world environment

Medium-term scheduling entity Swapping mechanism ————”————
Instant execution of the sched-
uler decision

Available When it is safe, otherwise
suspends the ongoing task
first

90

“rozprawa” — 2021/5/11 — 15:22 — page 91 — #91

Feature OS process scheduling TaskER harmonisation
Procedure of a job/task suspen-
sion and resumption

Save/load the process
memory (relatively is
a quick action)

Suspension and resump-
tion procedures enable
foreseeing consequences
of a task interruption and
mitigate them (relatively is
a time-consuming action)

Re-scheduling jobs/tasks on
their requests

Unavailable Available, because da-
class agents calculate
schedule parameters and
any change in the parame-
ters triggers the scheduling
algorithm

Abstract parameters are used in
the scheduling process

Unavailable Available (e.g., maximi-
sation of human conve-
nience, or for a restau-
rant runner task, the time
at which a new client ap-
proaches a table is a dead-
line for cleaning the table)

Hard restriction of deadlines Available Depends on the robot ap-
plication: for social and
service robots, deadlines
can be fuzzy

The types of jobs/tasks can have
dedicated schedule parameters

Processes have priori-
ties which can be di-
rectly compared

Various da-class agents
can compute different
schedule parameters
which can be transformed
and compared with each
other by tha-class agent
(e.g., object transportation
uses the shortest travel
distance, and human guid-
ance maximises human
convenience)

91

“rozprawa” — 2021/5/11 — 15:22 — page 92 — #92

5.2 Summary

The conducted study regards the problem of task management of an autonomous service robot.
The problem arises in multiple applications and limits the level of robots autonomy. It signif-
icantly affects the systems ordered by multiple users who do not agree their requests for the
system.

There are various applications for robots, and their control system’s versatility can be either
integrated or modular (Fig. 1.2). The problem of user request management arises in both types;
however, various parts of the system resolve it in each of them. In integrated systems, the
system’s overall behaviour is a result of a composition of elementary actions; thus, the user
request prioritisation and management is a duty of the composer (either the system developer,
if the composition is static or a planning algorithm). In a modular versatility case, elementary
actions compose independently developed task modules deployed on a robot according to the
user requests. Unfortunately, with the benefit of enhanced expandability of modular versatility
systems, the following disadvantage arises. Actions of the robot are coordinated in each of the
tasks; however, when tasks switch, the subsequent task’s actions are not coordinated with the
actions completed by the previous task. As a solution to this problem, the role of harmoniser
arise. Accordingly, the model of the task-related part of the system requires extra behaviours to
enable safe task switches and coordination.

Uncoordinated task switch can injure the environment inhabitants, lead to surroundings dam-
age or even disasters. Exemplary consequences that were avoided by application of the TaskER
model in the situations described in this dissertation verification were:

• an unnecessary walk of a human in case of the task switch while guiding the human.

• an unintended and unmaintained transport of the can grabbed while executing one task,
leading to a spill off the liquid from the can. It is possible because the tasks are inde-
pendent, and the subsequent task has no information about the object being carried and
cannot configure the safe motion constraints.

Visualisation of the consequences prevented by the TaskER model implementation in the veri-
fication systems is shown in Fig. 5.2 Besides the above possible consequences, there are more
situations where a switch of independent tasks without care can be dangerous:

• leaving a cooker on for a long time without supervision,

• an unsafe configuration of robot arms or a dangerous mobile base speed for a situation
(e.g. carrying a sharp object or liquid container collected during the previous, interrupted
task),

92

“rozprawa” — 2021/5/11 — 15:22 — page 93 — #93

John's destination

The navigation goal of
the interrupting task

Unnecessary
walk for John

Unnecessary and unaware
transportation of the object
by the interrupting task

1) Spill of liquid contained in the can
 (because the interrupting task does not adapt
 robot motion speed to the situation)

1) John is irritated due to unnecessary walk

2) John can be injured if he is disabled or
 has trouble walking

The consequences prevented by a prudent task switch during verification:

Figure 5.2: Visualisation of the consequences prevented by the tasks management defined in the
TaskER model.

• completion of an interrupting task can be impossible because the robot resources were not
freed before the task switch, and the interrupting task has no knowledge of how to free
it (e.g. the interrupted task directed the robot to grab an object, but the interrupting task
does not implement any manipulation actions),

• a deadlock of a robot (e.g., a task directed the robot to a classified room using a secret
code, but the interrupting task does not have access to the code).

The above summary regards the first thesis:
”A service robot can compromise the convenience and safety of humans and the safety of robots/objects
in their environment while it switches independent tasks”.

The related work section shows different algorithms for planning robot actions and respect-
ing some criteria (e.g. deadlines, priorities) of requests; however, the whole problem of har-
monisation is not resolved. The algorithms of this kind mostly resolve the request management
problem in integrated versatility systems. The modular versatility systems feature a barrier be-
tween domains of the tasks. The barrier complicates the solution to the request management
problem in modular versatility systems. Additionally, analysis of the related works discloses
a lack of a model for system managing user requests with dynamic criteria. Such criteria are
expected in service robotics, where the users’ preferences change over time.

This dissertation constitutes the problem of request management in modular versatility sys-
tems and proposes a solution to it. The analysis of the problem resulted in the concept of the
harmonisation procedure (Fig. 2.4). The procedure involves a configurable scheduling algo-
rithm that uses schedule parameters to compute schedule decisions. Furthermore, the analysis

93

“rozprawa” — 2021/5/11 — 15:22 — page 94 — #94

revealed three crucial orthogonal classification criteria: range, constancy and factuality of the
schedule parameters (Fig. 2.2). The analysis described in Sec. 2.1.2 shows the need for ease
configuration of the scheduling algorithm and the parameters for various robot applications.
For example, different algorithms (and their parameters) should be used for robots working in
a factory and versatile service robots working in an elderly house. In the first case, the algorithm
can be configured to maximise production quantity and quality, and in the other, to maximise
convenience of encountered humans. The above summary regards the second thesis:
”In various robot applications, different algorithms and parameters for task scheduling should
be used”.

The solution to the stated problem is the model for modular versatility systems featured
with user request management. The robot controller structure is variable, and it is composed
of multiple agents derived from various agent classes. The scheduling algorithm implemented
in the Task Harmoniser Agent is configurable with ease, and the schedule parameters can be of
various classes.

In this study, sample use cases describe the desired behaviours of a robot control system faced
with the request management problem. Then, based on the use cases, six requirements for the
control system are formulated. Next, the model is described. The model adapts and extends the
known variable structure for robot control systems, namely, the RAPP architecture, to satisfy the
previously specified requirements. Finally, the TaskER framework was implemented, enabling
the efficient creation of the robot tasks and injecting them as modules into the systems that
utilise the proposedmodel. The algorithm that defines the task scheduling strategy differs among
robots, applications, and environments; hence, the TaskER framework applies the algorithm as
an interchangeable function.

The model that is described in this dissertation is presented in mathematical and UML di-
agram formulations. Thus, the overall behaviour of a system that follows the model is strictly
defined. Requested tasks have their contexts and are implemented as separate processes, which
facilitates understanding of the system’s current state and the progress of each task.

Model of the Dynamic Agent, being an encapsulation of a task in the proposed approach,
defines constraints and specifies the tasks to enable task harmonisation feature to the system.
A significant part of the task is roughly constrained by the model proposed in this work. For ex-
ample, themethods to update the task in SupTsk

dy , generation of suspension strategy in SgenSusp
dy and

task context-dependent parameters computation for the scheduling algorithm can be adjusted.
The methods to plan actions executed by the task is another important problem in robotics, and
any which results with a plan representable with FSM can be used. In the model, it is defined
when and by which agent the planning method is executed. Various planning methods require
different world models. As the proposed task management method does not depend on any

94

“rozprawa” — 2021/5/11 — 15:22 — page 95 — #95

planning methods or world model, any can be used. Furthermore, the described work can be
applied even in the systems without deliberation and semantic planning. Each task (Dynamic
Agent) can use different planning method to update its actions and constraints or do not use any
and have its actions statically defined. Moreover, da-class agents:

1. compute task-dependent parameters that are used for the task scheduling,

2. suspend their operation safely in the case of a task switch,

3. update their plans before the task execution, and

4. block a task switch if it would be dangerous according to the context and knowledge of
the agent.

The conducted tests show that the example system satisfies the specified requirements.
Moreover, they demonstrate the benefits for a system that follows the model. The above sum-
mary regards the third thesis:
”The proposed model of a service robot control system (named TaskER) fosters safety and user’s
convenience while the robot manages independent, suspendable tasks in a dynamic environment,
and the model is configurable in the aspects of:

• the task scheduling algorithm,
• the parameters used to compute schedule,
• the interfaces for task requests,
• the set of tasks available for robots in the system.”

5.3 Future work

The study revealed that the task switch problem in modular versatility systems is not resolved,
and several research objectives require further investigation. One of them is verification of
the proposed model with a robot control architecture featured with semantic planning (such as
ROSPlan [94]) and to call the planner in both SupTsk

dy and SgenSusp
dy to generate FSMdy,exec and

FSMdy,es, respectively. With this feature, the system’s tasks will use planned strategies for task
suspension and update actions. Furthermore, the following opened problems were identified:

1. a method for choosing f shdlha and f compSP
dy functions and schedule parameters for various

tasks, applications and environment classes (e.g., using an objective optimisation algo-
rithm such as [111]),

2. a method for classification of the task stages into suspendable and blocking,

95

“rozprawa” — 2021/5/11 — 15:22 — page 96 — #96

3. an extension of the PDDL standard to support the proposed approach and enable seman-
tic planners to consider the task scheduling problem while composing FSMdy,exeTsk and
FSMdy,exeSusp FSMs,

4. a metric to evaluate task harmonisation quality.

5. a self-tuning procedure for the scheduling algorithm to learn desired task switch strategy
[112], [113], e.g. based on machine learning, and

6. integration of the model with one of the formally defined task models featured with a con-
sistent language for scheduling algorithm specification and planning method [114].

96

“rozprawa” — 2021/5/11 — 15:22 — page 97 — #97

Bibliography

[1] R. F. Adler and R. Benbunan-Fich, “Juggling on a high wire:Multitasking effects on per-
formance,” International Journal of Human-Computer Studies, vol. 70, no. 2, pp. 156–
168, 2012.

[2] L. L. Bowman, L. E. Levine, B. M. Waite, and M. Gendron, “Can students really multi-
task? an experimental study of instant messaging while reading,” Computers & Educa-
tion, vol. 54, no. 4, pp. 927–931, 2010.

[3] D. L. Strayer, J. M. Watson, and F. A. Drews, “Cognitive distraction while multitasking
in the automobile,” in Psychology of Learning and Motivation, vol. 54, Elsevier, 2011,
pp. 29–58.

[4] A. Mazur, “Trajectory tracking control in workspace-defined tasks for nonholonomic
mobile manipulators,” English, Robotica, vol. 28, no. 1, pp. 57–68, Jan. 2010, Prawa
autorskie - Copyright © Cambridge University Press 2009; Ostatnia aktualizacja - 2015-
08-15. [Online]. Available: https://search.proquest.com/scholarly-journal
s/trajectory-tracking-control-workspace-defined/docview/211837370/
se-2?accountid=27375.

[5] B. Cybulski, A. Wegierska, and G. Granosik, “Accuracy comparison of navigation local
planners on ros-based mobile robot,” in 2019 12th International Workshop on Robot
Motion and Control (RoMoCo), IEEE, 2019, pp. 104–111.

[6] W. Kowalczyk, M. Michałek, and K. Kozłowski, “Trajectory tracking control with ob-
stacle avoidance capability for unicycle-like mobile robot,” Bulletin of the Polish
Academy of Sciences. Technical Sciences, vol. 60, no. 3, pp. 537–546, 2012.

[7] T. Gawron and M. M. Michałek, “Planning the waypoint-following task for a unicycle-
like robot in cluttered environments,” Journal of Automation Mobile Robotics and In-
telligent Systems, vol. 9, 2015.

[8] M.M.Michałek, “Cascade-like modular tracking controller for non-standard n-trailers,”
IEEE Transactions on Control Systems Technology, vol. 25, no. 2, pp. 619–627, 2016.

97

https://search.proquest.com/scholarly-journals/trajectory-tracking-control-workspace-defined/docview/211837370/se-2?accountid=27375
https://search.proquest.com/scholarly-journals/trajectory-tracking-control-workspace-defined/docview/211837370/se-2?accountid=27375
https://search.proquest.com/scholarly-journals/trajectory-tracking-control-workspace-defined/docview/211837370/se-2?accountid=27375

“rozprawa” — 2021/5/11 — 15:22 — page 98 — #98

[9] M. Visinsky, J. Cavallaro, and I. Walker, “Robotic fault detection and fault tolerance:
A survey,” Reliability Engineering & System Safety, vol. 46, no. 2, pp. 139–158, 1994,
ISSN: 0951-8320. DOI: https://doi.org/10.1016/0951-8320(94)90132-5.

[10] S. Haddadin, “Physical safety in robotics,” in Formal Modeling and Verification of
Cyber-Physical Systems: 1st International Summer School on Methods and Tools for
the Design of Digital Systems, Bremen, Germany, September 2015, R. Drechsler and U.
Kühne, Eds. Wiesbaden: Springer Fachmedien Wiesbaden, 2015, pp. 249–271, ISBN:
978-3-658-09994-7. DOI: 10.1007/978-3-658-09994-7_9.

[11] M. Mohanan and A. Salgoankar, “A survey of robotic motion planning in dynamic en-
vironments,” Robotics and Autonomous Systems, vol. 100, pp. 171–185, 2018.

[12] W. Domski, A. Mazur, and M. Kaczmarek, “Extended factitious force approach for
control of a mobile manipulator moving on unknown terrain,” Journal of Intelligent
& Robotic Systems, vol. 93, no. 3, pp. 699–712, 2019.

[13] T. S. Tadele, T. de Vries, and S. Stramigioli, “The safety of domestic robotics: A survey
of various safety-related publications,” IEEE Robotics Automation Magazine, vol. 21,
no. 3, pp. 134–142, 2014. DOI: 10.1109/MRA.2014.2310151.

[14] W. Domski and A. Mazur, “Emergency control of a space 3R manipulator in case of
one joint failure,” in 2017 22nd International Conference on Methods and Models in
Automation and Robotics (MMAR), 2017, pp. 384–389. DOI: 10.1109/MMAR.2017.
8046858.

[15] M. Ben-Ari and F. Mondada, “Robots and their applications,” in Elements of Robotics,
Springer, 2018, pp. 1–20.

[16] T. S. Dahl and M. N. K. Boulos, “Robots in health and social care: A complementary
technology to home care and telehealthcare?” Robotics, vol. 3, no. 1, pp. 1–21, 2014.

[17] A. Mazur, L. Podsędkowski, A. Szymański, and M. Zawierucha, “Compliance force
control for polish cardiosurgical manipulator RobIn Heart,” in 9th International Work-
shop on Robot Motion and Control, 2013, pp. 92–97. DOI: 10.1109/RoMoCo.2013.
6614590.

[18] E. Ruiz, R. Acuña, N. Certad, A. Terrones, and M. E. Cabrera, “Development of a con-
trol platform for the mobile robot roomba using ros and a kinect sensor,” in Robotics
Symposium and Competition (LARS/LARC), 2013 Latin American, IEEE, 2013, pp. 55–
60.

98

https://doi.org/https://doi.org/10.1016/0951-8320(94)90132-5
https://doi.org/10.1007/978-3-658-09994-7_9
https://doi.org/10.1109/MRA.2014.2310151
https://doi.org/10.1109/MMAR.2017.8046858
https://doi.org/10.1109/MMAR.2017.8046858
https://doi.org/10.1109/RoMoCo.2013.6614590
https://doi.org/10.1109/RoMoCo.2013.6614590

“rozprawa” — 2021/5/11 — 15:22 — page 99 — #99

[19] G. Farias, E. Fabregas, E. Peralta, H. Vargas, S. Dormido-Canto, and S. Dormido, “De-
velopment of an easy-to-use multi-agent platform for teaching mobile robotics,” IEEE
Access, vol. 7, pp. 55 885–55 897, 2019.

[20] J. Malec, “Some thoughts on robotics for education,” in AAAI spring symposium on
robotics and education, 2001.

[21] I. Zubrycki and G. Granosik, “Teaching robotics with cloud tools,” in International Con-
ference on Robotics and Education RiE 2017, Springer, 2017, pp. 301–310.

[22] L. Guevara, M. M. Michałek, and F. A. Cheein, “Headland turning algorithmization for
autonomous N-trailer vehicles in agricultural scenarios,” Computers and Electronics in
Agriculture, vol. 175, p. 105 541, 2020.

[23] A. Lopez, R. Paredes, D. Quiroz, G. Trovato, and F. Cuellar, “Robotman: A security
robot for human-robot interaction,” in Advanced Robotics (ICAR), 2017 18th Interna-
tional Conference on, IEEE, 2017, pp. 7–12.

[24] T. Chen and C. Kemp, “A direct physical interface for navigation and positioning of a
robotic nursing assistant,” Advanced Robotics, vol. 25, pp. 605–627, Mar. 2011. DOI:
10.1163/016918611X558243.

[25] A. G. Ozkil, Z. Fan, S. Dawids, H. Aanes, J. K. Kristensen, and K. H. Christensen,
“Service robots for hospitals: A case study of transportation tasks in a hospital,” in 2009
IEEE international conference on automation and logistics, IEEE, 2009, pp. 289–294.

[26] I. Zubrycki, M. Kolesiński, and G. Granosik, “A participatory design for enhancing the
work environment of therapists of disabled children,” in 2016 25th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), IEEE, 2016,
pp. 781–786.

[27] I. Zubrycki and G. Granosik, “Understanding therapists’ needs and attitudes towards
robotic support. the roboterapia project,” International Journal of Social Robotics, vol. 8,
no. 4, pp. 553–563, 2016.

[28] S. A. Frennert, A. Forsberg, and B. Östlund, “Elderly people’s perceptions of a tele-
healthcare system: Relative advantage, compatibility, complexity and observability,”
Journal of technology in human services, vol. 31, no. 3, pp. 218–237, 2013.

[29] J. Aldrich, D.Garlan, C. Kästner, C. LeGoues, A.Mohseni-Kabir, I. Ruchkin, S. Samuel,
B. Schmerl, C. S. Timperley, M. Veloso, et al., “Model-based adaptation for robotics
software,” IEEE Software, vol. 36, no. 2, pp. 83–90, 2019.

99

https://doi.org/10.1163/016918611X558243

“rozprawa” — 2021/5/11 — 15:22 — page 100 — #100

[30] C. Zieliński, M. Stefańczyk, T. Kornuta, M. Figat, W. Dudek, W. Szynkiewicz, W.
Kasprzak, J. Figat, M. Szlenk, T. Winiarski, K. Banachowicz, T. Zielińska, E. G. Tsar-
doulias, A. L. Symeonidis, F. E. Psomopoulos, A.M. Kintsakis, P. A.Mitkas, A. Thallas,
S. E. Reppou, G. T. Karagiannis, K. Panayiotou, V. Prunet, M. Serrano, J.-P. Merlet, S.
Arampatzis, A. Giokas, L. Penteridis, I. Trochidis, D. Daney, and M. Iturburu, “Variable
structure robot control systems: The rapp approach,”Robotics and Autonomous Systems,
vol. 94, pp. 226–244, 2017, ISSN: 0921-8890. DOI: 10.1016/j.robot.2017.05.002.

[31] G.-Z. Yang, B. J. Nelson, R. R. Murphy, H. Choset, H. Christensen, S. H. Collins, P.
Dario, K. Goldberg, K. Ikuta, N. Jacobstein, D. Kragic, R. H. Taylor, and M. McNutt,
“Combating covid-19—the role of robotics in managing public health and infectious
diseases,” Science Robotics, vol. 5, no. 40, 2020. DOI: 10.1126/scirobotics.abb
5589.

[32] P. P. Ray, “Internet of robotic things: Concept, technologies, and challenges,” IEEE Ac-
cess, vol. 4, pp. 9489–9500, 2016.

[33] D. Perzanowski, A. C. Schultz, W. Adams, E. Marsh, and M. Bugajska, “Building a
multimodal human-robot interface,” IEEE Intelligent Systems, vol. 16, no. 1, pp. 16–21,
2001.

[34] I. A. Awada, I. Mocanu, S. Jecan, L. Rusu, A. M. Florea, O. Cramariuc, and B. Cramar-
iuc, “Mobile@old - an assistive platform for maintaining a healthy lifestyle for elderly
people,” in 2017 E-Health and Bioengineering Conference (EHB), 2017, pp. 591–594.

[35] W. Szynkiewicz, W. Kasprzak, C. Zieliński, W. Dudek, M. Stefańczyk, A. Wilkowski,
andM. Figat, “Utilisation of EmbodiedAgents in theDesign of Smart Human–Computer
Interfaces – A Case Study in Cyberspace Event Visualisation Control,” Electronics,
vol. 9, no. 6, p. 976, 2020. DOI: 10.3390/electronics9060976.

[36] A. Zalewski, K. Borowa, and A. Ratkowski, “On cognitive biases in architecture deci-
sionmaking,” inEuropeanConference on Software Architecture, Springer, 2017, pp. 123–
137.

[37] A. Zalewski and S. Kijas, “Beyond atam: Early architecture evaluation method for large-
scale distributed systems,” Journal of Systems and Software, vol. 86, no. 3, pp. 683–697,
2013.

[38] T. Kornuta, C. Zieliński, and T.Winiarski, “A universal architectural pattern and specifi-
cation method for robot control system design,” Bulletin of the Polish Academy
of Sciences: Technical Sciences, vol. 68, no. No. 1 February, pp. 3–29, 2020. DOI:
10.24425/bpasts.2020.131827.

100

https://doi.org/10.1016/j.robot.2017.05.002
https://doi.org/10.1126/scirobotics.abb5589
https://doi.org/10.1126/scirobotics.abb5589
https://doi.org/10.3390/electronics9060976
https://doi.org/10.24425/bpasts.2020.131827

“rozprawa” — 2021/5/11 — 15:22 — page 101 — #101

[39] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the systems mod-
eling language. Morgan Kaufmann, 2014.

[40] T.Winiarski,M.Węgierek, D. Seredyński,W.Dudek, K. Banachowicz, and C. Zieliński,
“EARL – Embodied Agent-Based Robot Control Systems Modelling Language,” Elec-
tronics, vol. 9, no. 2 - 379, 2020, ISSN: 2079-9292. DOI: 10 . 3390 / electronics
9020379.

[41] G. Schuh, V. Zeller, M.-F. Stroh, and P. Harder, “Finding the right way towards a cps–a
methodology for individually selecting development processes for cyber-physical sys-
tems,” inWorking Conference on Virtual Enterprises, Springer, 2019, pp. 81–90.

[42] A. R. Da Silva, “Model-driven engineering: A survey supported by the unified concep-
tual model,” Computer Languages, Systems & Structures, vol. 43, pp. 139–155, 2015.

[43] E. Seidewitz, “What models mean,” IEEE Software, vol. 20, no. 5, pp. 26–32, 2003.
DOI: 10.1109/MS.2003.1231147.

[44] T. Kühne, “Matters of (meta-) modeling,” Software & Systems Modeling, vol. 5, no. 4,
pp. 369–385, 2006.

[45] B. Selic, “The pragmatics of model-driven development,” IEEE software, vol. 20, no. 5,
pp. 19–25, 2003.

[46] J. Bézivin and O. Gerbé, “Towards a precise definition of the omg/mda framework,” in
Proceedings 16th Annual International Conference on Automated Software Engineering
(ASE 2001), IEEE, 2001, pp. 273–280.

[47] C. Zanabria, F. P. Andrén, T. I. Strasser, andW. Kastner, “A model-driven and ontology-
based engineering approach for smart grid automation applications,” in IECON 2019-
45th Annual Conference of the IEEE Industrial Electronics Society, IEEE, vol. 1, 2019,
pp. 6635–6641.

[48] P. Iyenghar and E. Pulvermueller, “Amodel-driven workflow for energy-aware schedul-
ing analysis of iot-enabled use cases,” IEEE Internet of Things Journal, vol. 5, no. 6,
pp. 4914–4925, 2018.

[49] A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,” Ieee Access,
vol. 6, pp. 28 573–28 593, 2018.

101

https://doi.org/10.3390/electronics9020379
https://doi.org/10.3390/electronics9020379
https://doi.org/10.1109/MS.2003.1231147

“rozprawa” — 2021/5/11 — 15:22 — page 102 — #102

[50] W. Dudek, W. Szynkiewicz, and T. Winiarski, “Nao Robot Navigation System Structure
Development in an Agent-Based Architecture of the RAPP Platform,” in Recent Ad-
vances in Automation, Robotics and Measuring Techniques, R. Szewczyk, C. Zieliński,
and M. Kaliczyńska, Eds., ser. Advances in Intelligent Systems and Computing (AISC),
vol. 440, Springer, 2016, pp. 623–633. DOI: 10.1007/978-3-319-29357-8_54.

[51] ——, “Cloud computing support for the multi-agent robot navigation system,” English,
Journal of Automation Mobile Robotics and Intelligent Systems, vol. 11, no. 2, pp. 67–
74, 2017. DOI: 10.14313/JAMRIS_2-2017/18.

[52] M. Michalek and K. Kozlowski, “Trajectory tracking for a threecycle mobile robot:
The vector field orientation approach,” in Proceedings of the 44th IEEE Conference on
Decision and Control, IEEE, 2005, pp. 1119–1124.

[53] K. Tchoń, K. Arent, M. Janiak, and Ł. Juszkiewicz, “Motion planning for the mobile
platform rex,” in Recent advances in automation, robotics and measuring techniques,
Springer, 2014, pp. 497–506.

[54] K. Łakomy and M. M. Michałek, “Robust output-feedback VFO-ADR control of un-
deractuated spatial vehicles in the task of following non-parametrized paths,” European
Journal of Control, vol. 58, pp. 258–277, 2021.

[55] E. Gat, R. P. Bonnasso, R. Murphy, et al., “On three-layer architectures,” Artificial in-
telligence and mobile robots, vol. 195, p. 210, 1998.

[56] W. Dudek, K. Banachowicz,W. Szynkiewicz, and T.Winiarski, “Distributed NAO robot
navigation system in the hazard detection application,” in 21th IEEE International Con-
ference onMethods andModels in Automation and Robotics, MMAR’2016, IEEE, IEEE,
2016, pp. 942–947. DOI: 10.1109/MMAR.2016.7575264.

[57] C. Zieliński, W. Szynkiewicz, M. Figat, M. Szlenk, T. Kornuta, W. Kasprzak, M. Ste-
fańczyk, T. Zielińska, and J. Figat, “Reconfigurable control architecture for exploratory
robots,” in 10th International Workshop on Robot Motion and Control (RoMoCo),
K. Kozłowski, Ed., IEEE, 2015, pp. 130–135. DOI: 10.1109/RoMoCo.2015.7219724.

[58] W. Dudek and T. Winiarski, “Scheduling of a robot’s tasks with the TaskER frame-
work,” IEEE Access, vol. 8, pp. 161 449–161 471, 2020. DOI: 10.1109/ACCESS.2020.
3020265.

[59] J. Pagès, L. Marchionni, and F. Ferro, “Tiago: The modular robot that adapts to different
research needs,” 2016.

102

https://doi.org/10.1007/978-3-319-29357-8_54
https://doi.org/10.14313/JAMRIS_2-2017/18
https://doi.org/10.1109/MMAR.2016.7575264
https://doi.org/10.1109/RoMoCo.2015.7219724
https://doi.org/10.1109/ACCESS.2020.3020265
https://doi.org/10.1109/ACCESS.2020.3020265

“rozprawa” — 2021/5/11 — 15:22 — page 103 — #103

[60] Institute of Control andComputation Engineering,WUT,Velma robot description,WUT,
Institute of Control and Computation Engineering, 2020. [Online]. Available: https:
//www.robotyka.ia.pw.edu.pl/robots/velma/.

[61] T. Winiarski, J. Sikora, D. Seredyński, and W. Dudek, “Daimm simulation platform for
dual-arm impedance controlled mobile manipulation,” in 2021 7th International Con-
ference on Automation, Robotics and Applications (ICARA), IEEE, 2021, pp. 180–184.
DOI: 10.1109/ICARA51699.2021.9376462.

[62] INCARE, INCARE project web page, WUT, Institute of Control and Computation En-
gineering, 2020. [Online]. Available: https://www.robotyka.ia.pw.edu.pl/
projects/incare/.

[63] S. Bedaf, G. J. Gelderblom, D. S. Syrdal, H. Lehmann, H. Michel, D. Hewson, F.
Amirabdollahian, K. Dautenhahn, and L. Witte, “Which activities threaten independent
living of elderly when becoming problematic: Inspiration for meaningful service robot
functionality,” Disability and rehabilitation. Assistive technology, vol. 9, Oct. 2013.
DOI: 10.3109/17483107.2013.840861.

[64] J. F. Engelberger,Robotics in practice: management and applications of industrial robots.
Springer Science & Business Media, 2012.

[65] K. M. Tsui and H. A. Yanco, “Assistive, rehabilitation, and surgical robots from the
perspective of medical and healthcare professionals,” in AAAI Workshop on Human Im-
plications of Human-Robot Interaction, Technical Report WS-07-07 Papers from the
AAAI 2007 Workshop on Human Implications of HRI, 2007.

[66] F. Hegel, M. Lohse, A. Swadzba, S. Wachsmuth, K. Rohlfing, and B. Wrede, “Classes
of applications for social robots: A user study,” in RO-MAN 2007-The 16th IEEE In-
ternational Symposium on Robot and Human Interactive Communication, IEEE, 2007,
pp. 938–943.

[67] M. Vukobratovic,Dynamics and robust control of robot-environment interaction. World
Scientific, 2009, vol. 2.

[68] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned local models:
Application to dexterous manipulation,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2016, pp. 378–383.

[69] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in
multi-robot systems,” The International Journal of Robotics Research, vol. 23, no. 9,
pp. 939–954, 2004.

103

https://www.robotyka.ia.pw.edu.pl/robots/velma/
https://www.robotyka.ia.pw.edu.pl/robots/velma/
https://doi.org/10.1109/ICARA51699.2021.9376462
https://www.robotyka.ia.pw.edu.pl/projects/incare/
https://www.robotyka.ia.pw.edu.pl/projects/incare/
https://doi.org/10.3109/17483107.2013.840861

“rozprawa” — 2021/5/11 — 15:22 — page 104 — #104

[70] Z. Kootbally, C. Schlenoff, C. Lawler, T. Kramer, and S. K. Gupta, “Towards robust
assembly with knowledge representation for the planning domain definition language
(pddl),” Robotics and Computer-Integrated Manufacturing, vol. 33, pp. 42–55, 2015.

[71] W. Dudek, Harmonizing a complex robot tasks with TaskER, WUT, Institute of Con-
trol and Computation Engineering, 2020. [Online]. Available: https://vimeo.com/
403391725.

[72] ——, Example system execution using a real TIAGo robot, WUT, Institute of Con-
trol and Computation Engineering, 2021. [Online]. Available: https://vimeo.com/
521756050.

[73] ——, TaskER framework verification in mobile manipulation tasks, WUT, Institute of
Control and Computation Engineering, 2020. [Online]. Available: https://vimeo.
com/483480184.

[74] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, “The claraty architec-
ture for robotic autonomy,” in Aerospace Conference, 2001, IEEE Proceedings., IEEE,
vol. 1, 2001, pp. 1–121.

[75] S. Dennis, L. Alex, L. Matthias, and S. Christian, “The smartmdsd toolchain: An inte-
grated mdsd workflow and integrated development environment (ide) for robotics soft-
ware,” 2016.

[76] A. Steck and C. Schlegel, “SmartTCL: An execution language for conditional reactive
task execution in a three layer architecture for service robots,” in Int. Workshop on DY-
namic languages for RObotic and Sensors systems (DYROS/SIMPAR), 2010, pp. 274–
277.

[77] M. Stenmark, J. Malec, and A. Stolt, “From high-level task descriptions to executable
robot code,” in Intelligent Systems’, Springer, 2015, pp. 189–202.

[78] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on cloud robotics
and automation,” IEEE Transactions on Automation Science and Engineering, vol. 12,
no. 2, pp. 398–409, Apr. 2015, ISSN: 1545-5955. DOI: 10.1109/TASE.2014.2376492.

[79] J. Riazuelo, J. Civera, and J. M. M. Montiel, “C2TAM: A cloud framework for coopera-
tive tracking and mapping,” Robotics and Autonomous Systems, vol. 62, no. 4, pp. 401–
413, Apr. 2014.

[80] J. Salmerón-Garcıa, P. Íñigo-Blasco, F. Dıaz-del-Rıo, and D. Cagigas-Muñiz, “A trade-
off analysis of a cloud-based robot navigation assistant using stereo image processing,”
IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2, pp. 444–454,
Apr. 2015. DOI: 10.1109/TASE.2015.2403593.

104

https://vimeo.com/403391725
https://vimeo.com/403391725
https://vimeo.com/521756050
https://vimeo.com/521756050
https://vimeo.com/483480184
https://vimeo.com/483480184
https://doi.org/10.1109/TASE.2014.2376492
https://doi.org/10.1109/TASE.2015.2403593

“rozprawa” — 2021/5/11 — 15:22 — page 105 — #105

[81] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F. Kong, A. S. Ku-
mar, K. D. Meng, and G. W. Kit, “DAvinCi: A cloud computing framework for service
robots,” in Robotics and Automation (ICRA), IEEE, 2010, pp. 3084–3089.

[82] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “ROS: an open-source Robot Operating System,” in ICRA workshop on open source
software, vol. 3, 2009.

[83] O. S. R. Foundatioin, Robot Operating System, http://ros.org/, [Online; accessed
21-May-2015].

[84] K. Shvachko, H.Kuang, S. Radia, andR. Chansler, “The hadoop distributed file system,”
in 2010 IEEE 26th symposium on mass storage systems and technologies (MSST), IEEE,
2010, pp. 1–10.

[85] G. Mohanarajah, D. Hunziker, R. D’Andrea, andM.Waibel, “Rapyuta: A cloud robotics
platform,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2,
pp. 481–493, Apr. 2015. DOI: 10.1109/TASE.2014.2329556.

[86] R. Alami, A. Clodic, V. Montreuil, E. A. Sisbot, and R. Chatila, “Toward human-aware
robot task planning.,” in AAAI spring symposium: to boldly go where no human-robot
team has gone before, 2006, pp. 39–46.

[87] T. Winiarski, K. Banachowicz, M. Walęcki, and J. Bohren, “Multibehavioral position–
force manipulator controller,” in 21th IEEE International Conference on Methods and
Models in Automation and Robotics, MMAR, IEEE, 2016, pp. 651–656. DOI: 10.1109/
MMAR.2016.7575213.

[88] M. Stilman, “Task constrained motion planning in robot joint space,” in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2007, pp. 3074–
3081.

[89] M. Nakano, Y. Hasegawa, K. Nakadai, T. Nakamura, J. Takeuchi, T. Torii, H. Tsujino,
N. Kanda, and H. G. Okuno, “A two-layer model for behavior and dialogue planning
in conversational service robots,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, 2005, pp. 3329–3335.

[90] A. Mohseni Kabir and M. Veloso, “Robot task interruption by learning to switch among
multiple models,” Jul. 2018, pp. 4943–4949. DOI: 10.24963/ijcai.2018/686.

[91] J. Bohren and S. Cousins, “The smach high-level executive [ros news],” IEEE Robotics
& Automation Magazine, vol. 17, no. 4, pp. 18–20, 2010.

105

http://ros.org/
https://doi.org/10.1109/TASE.2014.2329556
https://doi.org/10.1109/MMAR.2016.7575213
https://doi.org/10.1109/MMAR.2016.7575213
https://doi.org/10.24963/ijcai.2018/686

“rozprawa” — 2021/5/11 — 15:22 — page 106 — #106

[92] S. Amador, S. Okamoto, and R. Zivan, “Dynamicmulti-agent task allocationwith spatial
and temporal constraints,” in Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014.

[93] A. Nouman, I. F. Yalciner, E. Erdem, and V. Patoglu, “Experimental evaluation of hybrid
conditional planning for service robotics,” in International Symposium on Experimental
Robotics, Springer, 2016, pp. 692–702.

[94] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera, N. Palomeras, N.
Hurtos, and M. Carreras, “Rosplan: Planning in the robot operating system,” in Twenty-
Fifth International Conference on Automated Planning and Scheduling, 2015.

[95] M. Kim, H. Ahn, and K. P. Kim, “Process-aware internet of things: A conceptual exten-
sion of the internet of things framework and architecture.,” TIIS, vol. 10, no. 8, pp. 4008–
4022, 2016.

[96] S. Park, J.-H. Kim, and G. Fox, “Effective real-time scheduling algorithm for cyber
physical systems society,” Future Generation Computer Systems, vol. 32, pp. 253–259,
2014.

[97] H. Mora, J. F. Colom, D. Gil, and A. Jimeno-Morenilla, “Distributed computational
model for shared processing on cyber-physical system environments,” Computer Com-
munications, vol. 111, pp. 68–83, 2017.

[98] A. Węgierska, K. Andrzejczak, M. Kujawiński, and G. Granosik, “Using labview and
ros for planning and coordination of robot missions, the example of erl emergency robots
and university rover challenge competitions,” Journal of Automation Mobile Robotics
and Intelligent Systems, vol. 13, 2019.

[99] J. Yao, X. Xu, and X. Liu, “Mixcps: Mixed time/event-triggered architecture of cyber–
physical systems,” Proceedings of the IEEE, vol. 104, no. 5, pp. 923–937, 2016.

[100] J. Kim, K. Lakshmanan, and R. R. Rajkumar, “Rhythmic tasks: A new task model with
continually varying periods for cyber-physical systems,” in Proceedings of the 2012
IEEE/ACMThird International Conference on Cyber-Physical Systems, IEEEComputer
Society, 2012, pp. 55–64.

[101] J. Xu and D. L. Parnas, “Scheduling processes with release times, deadlines, precedence
and exclusion relations,” IEEE Transactions on software engineering, vol. 16, no. 3,
pp. 360–369, 1990.

[102] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven scheduling model for real-
time operating systems.,” in Rtss, vol. 85, 1985, pp. 112–122.

106

“rozprawa” — 2021/5/11 — 15:22 — page 107 — #107

[103] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney, “Task scheduling for control
oriented requirements for cyber-physical systems,” in Real-Time Systems Symposium,
IEEE, 2008, pp. 47–56.

[104] M. Ghobaei-Arani, A. Souri, F. Safara, and M. Norouzi, “An efficient task scheduling
approach using moth-flame optimization algorithm for cyber-physical system applica-
tions in fog computing,” Transactions on Emerging Telecommunications Technologies,
e3770, 2019.

[105] M. Stefańczyk and W. Kasprzak, “Model-based 3D object recognition in RGB-D im-
ages,” in Bridging the Semantic Gap in Image and Video Analysis, H. Kwaśnicka and
L. C. Jain, Eds. Springer, 2018, pp. 73–96, ISBN: 978-3-319-73891-8. DOI: 10.1007/
978-3-319-73891-8_5.

[106] T. Winiarski, W. Kasprzak, M. Stefańczyk, and M. Walęcki, “Automated inspection of
door parts based on fuzzy recognition system,” in 2016 21st International Conference
onMethods andModels in Automation and Robotics (MMAR), 2016, pp. 478–483. DOI:
10.1109/MMAR.2016.7575182.

[107] W. Szynkiewicz, “Robot grasp synthesis under object pose uncertainty,” Journal of Au-
tomation Mobile Robotics and Intelligent Systems, vol. 9, no. 1, pp. 53–61, 2015. DOI:
10.14313/JAMRIS_1-2015/7.

[108] ——, “Skill-based bimanual manipulation planning,” Journal of Telecommunications
and Information Technology, no. 4, pp. 54–62, 2012. [Online]. Available: http : / /
yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-
BATA-0018-0007/c/httpwww_itl_waw_plczasopismajtit2012454.pdf.

[109] W. Kasprzak, W. Szynkiewicz, D. Zlatanov, and T. Zielińska, “A hierarchical CSP
search for path planning of cooperating self-reconfigurable mobile fixtures,” Engineer-
ing Applications of Artificial Intelligence, vol. 34, pp. 85–98, 2014, ISSN: 0952-1976.
DOI: https://doi.org/10.1016/j.engappai.2014.05.013.

[110] K. Jeffay, “Scheduling sporadic tasks with shared resources in hard-real-time systems,”
North Carolina Univ At Chapel Hill Dept Of Computer Science, Tech. Rep., 1990.

[111] J. Ota, “Goal state optimization algorithm considering computational resource constraints
and uncertainty in task execution time,” Robotics and Autonomous Systems, vol. 57,
no. 4, pp. 403–410, 2009.

[112] C. Sirithunge, A. G. B. P. Jayasekara, and D. P. Chandima, “Proactive robots with the
perception of nonverbal human behavior: A review,” IEEE Access, vol. 7, pp. 77 308–
77 327, 2019.

107

https://doi.org/10.1007/978-3-319-73891-8_5
https://doi.org/10.1007/978-3-319-73891-8_5
https://doi.org/10.1109/MMAR.2016.7575182
https://doi.org/10.14313/JAMRIS_1-2015/7
http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BATA-0018-0007/c/httpwww_itl_waw_plczasopismajtit2012454.pdf
http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BATA-0018-0007/c/httpwww_itl_waw_plczasopismajtit2012454.pdf
http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BATA-0018-0007/c/httpwww_itl_waw_plczasopismajtit2012454.pdf
https://doi.org/https://doi.org/10.1016/j.engappai.2014.05.013

“rozprawa” — 2021/5/11 — 15:22 — page 108 — #108

[113] T.Winiarski, W. Dudek, M. Stefańczyk, Ł. Zieliński, D. Giełdowski, and D. Seredyński,
“An intent-based approach for creating assistive robots’ control systems,” arXiv preprint
arXiv:2005.12106, 2020.

[114] G. Gierse, T. Niemueller, J. Claßen, and G. Lakemeyer, “Interruptible task execution
with resumption in golog,” in Proceedings of the Twenty-second European Conference
on Artificial Intelligence, 2016, pp. 1265–1273.

108

	Glossary
	Introduction
	Motivation
	Background of the research
	Thesis of the dissertation
	Works that the study is based on
	Organisation of the research

	Explanation of the problem and the formal notation
	Considered use cases
	The system requirements
	Contribution and applicability
	Notation of the model specification

	The robot system model enabling prudent task management
	The system structure
	The Dynamic Agent class
	The Task Harmoniser Agent class
	The Executor, Cloud and Task Requester Agent classes
	The harmonisation procedure

	Verification – implementation, specification and execution of the example systems
	Implementation of the TaskER model
	The system with simple tasks and complex schedule parameters – the TIAGo robot example
	The system with a complex task and simple schedule parameters – the mobile manipulator example

	Conclusions
	Discussion and related works
	Summary
	Future work

